IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i12p6960-6966.html
   My bibliography  Save this article

Interactions of energy technology development and new energy exploitation with water technology development in China

Author

Listed:
  • Liang, Sai
  • Zhang, Tianzhu

Abstract

Interactions of energy policies with water technology development in China are investigated using a hybrid input-output model and scenario analysis. The implementation of energy policies and water technology development can produce co-benefits for each other. Water saving potential of energy technology development is much larger than that of new energy exploitation. From the viewpoint of proportions of water saving co-benefits of energy policies, energy sectors benefit the most. From the viewpoint of proportions of energy saving and CO2 mitigation co-benefits of water technology development, water sector benefits the most. Moreover, economic sectors are classified into four categories concerning co-benefits on water saving, energy saving and CO2 mitigation. Sectors in categories 1 and 2 have big direct co-benefits. Thus, they can take additional responsibility for water and energy saving and CO2 mitigation. If China implements life cycle materials management, sectors in category 3 can also take additional responsibility for water and energy saving and CO2 mitigation. Sectors in category 4 have few co-benefits from both direct and accumulative perspectives. Thus, putting additional responsibility on sectors in category 4 might produce pressure for their economic development.

Suggested Citation

  • Liang, Sai & Zhang, Tianzhu, 2011. "Interactions of energy technology development and new energy exploitation with water technology development in China," Energy, Elsevier, vol. 36(12), pages 6960-6966.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:12:p:6960-6966
    DOI: 10.1016/j.energy.2011.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211006104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Ching-Chih, 2010. "A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China," Applied Energy, Elsevier, vol. 87(11), pages 3533-3537, November.
    2. Fan, Ying & Liao, Hua & Wei, Yi-Ming, 2007. "Can market oriented economic reforms contribute to energy efficiency improvement? Evidence from China," Energy Policy, Elsevier, vol. 35(4), pages 2287-2295, April.
    3. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    4. Yuan, Chaoqing & Liu, Sifeng & Wu, Junlong, 2010. "The relationship among energy prices and energy consumption in China," Energy Policy, Elsevier, vol. 38(1), pages 197-207, January.
    5. Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
    6. Liao, Hua & Fan, Ying & Wei, Yi-Ming, 2007. "What induced China's energy intensity to fluctuate: 1997-2006?," Energy Policy, Elsevier, vol. 35(9), pages 4640-4649, September.
    7. Qudrat-Ullah, Hassan & Seong, Baek Seo, 2010. "How to do structural validity of a system dynamics type simulation model: The case of an energy policy model," Energy Policy, Elsevier, vol. 38(5), pages 2216-2224, May.
    8. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    9. Weisz, Helga & Duchin, Faye, 2006. "Physical and monetary input-output analysis: What makes the difference?," Ecological Economics, Elsevier, vol. 57(3), pages 534-541, May.
    10. Liang, Sai & Zhang, Tianzhu, 2011. "Managing urban energy system: A case of Suzhou in China," Energy Policy, Elsevier, vol. 39(5), pages 2910-2918, May.
    11. Ma, Linwei & Liu, Pei & Fu, Feng & Li, Zheng & Ni, Weidou, 2011. "Integrated energy strategy for the sustainable development of China," Energy, Elsevier, vol. 36(2), pages 1143-1154.
    12. Ashlynn S. Stillwell & David C. Hoppock & Michael E. Webber, 2010. "Energy Recovery from Wastewater Treatment Plants in the United States: A Case Study of the Energy-Water Nexus," Sustainability, MDPI, vol. 2(4), pages 1-18, April.
    13. Bezdez, Roger H. & Shapiro, Arlene K., 1978. "Empirical tests of input-output forecasts," Socio-Economic Planning Sciences, Elsevier, vol. 12(1), pages 29-36.
    14. Liao, Hua & Wei, Yi-Ming, 2010. "China's energy consumption: A perspective from Divisia aggregation approach," Energy, Elsevier, vol. 35(1), pages 28-34.
    15. Zhao, Xiaoli & Ma, Chunbo & Hong, Dongyue, 2010. "Why did China's energy intensity increase during 1998-2006: Decomposition and policy analysis," Energy Policy, Elsevier, vol. 38(3), pages 1379-1388, March.
    16. Frederick W. Allen & Priscilla A. Halloran & Angela H. Leith & M. Clare Lindsay, 2009. "Using Material Flow Analysis for Sustainable Materials Management," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 662-665, October.
    17. Zhang, Na & Lior, Noam & Jin, Hongguang, 2011. "The energy situation and its sustainable development strategy in China," Energy, Elsevier, vol. 36(6), pages 3639-3649.
    18. Chai, Qimin & Zhang, Xiliang, 2010. "Technologies and policies for the transition to a sustainable energy system in china," Energy, Elsevier, vol. 35(10), pages 3995-4002.
    19. John D. Sterman, 1987. "Testing Behavioral Simulation Models by Direct Experiment," Management Science, INFORMS, vol. 33(12), pages 1572-1592, December.
    20. Sai Liang & Lei Shi & Tianzhu Zhang, 2011. "Achieving Dewaterization in Industrial Parks," Journal of Industrial Ecology, Yale University, vol. 15(4), pages 597-613, August.
    21. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    22. Liu, Yaobin, 2009. "Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model)," Energy, Elsevier, vol. 34(11), pages 1846-1854.
    23. Foran, Barney & Lenzen, Manfred & Dey, Christopher & Bilek, Marcela, 2005. "Integrating sustainable chain management with triple bottom line accounting," Ecological Economics, Elsevier, vol. 52(2), pages 143-157, January.
    24. Zhang, Youguo, 2009. "Structural decomposition analysis of sources of decarbonizing economic development in China; 1992-2006," Ecological Economics, Elsevier, vol. 68(8-9), pages 2399-2405, June.
    25. Liang, Sai & Wang, Can & Zhang, Tianzhu, 2010. "An improved input-output model for energy analysis: A case study of Suzhou," Ecological Economics, Elsevier, vol. 69(9), pages 1805-1813, July.
    26. Li, Man, 2010. "Decomposing the change of CO2 emissions in China: A distance function approach," Ecological Economics, Elsevier, vol. 70(1), pages 77-85, November.
    27. Zhang, Ming & Mu, Hailin & Ning, Yadong, 2009. "Accounting for energy-related CO2 emission in China, 1991-2006," Energy Policy, Elsevier, vol. 37(3), pages 767-773, March.
    28. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    29. Jiang, Bing & Sun, Zhenqing & Liu, Meiqin, 2010. "China's energy development strategy under the low-carbon economy," Energy, Elsevier, vol. 35(11), pages 4257-4264.
    30. Hoekstra, Rutger & van den Bergh, Jeroen C.J.M., 2006. "Constructing physical input-output tables for environmental modeling and accounting: Framework and illustrations," Ecological Economics, Elsevier, vol. 59(3), pages 375-393, September.
    31. Zhang, Ming & Mu, Hailin & Ning, Yadong & Song, Yongchen, 2009. "Decomposition of energy-related CO2 emission over 1991-2006 in China," Ecological Economics, Elsevier, vol. 68(7), pages 2122-2128, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Li & Liang, Dong & Di, Wang, 2013. "Economic and environmental gains of China's fossil energy subsidies reform: A rebound effect case study with EIMO model," Energy Policy, Elsevier, vol. 54(C), pages 335-342.
    2. Gu, Alun & Teng, Fei & Lv, Zhiqiang, 2016. "Exploring the nexus between water saving and energy conservation: Insights from industry sector during the 12th Five-Year Plan period in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 28-38.
    3. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2015. "Exploring the water-energy nexus in Brazil: The electricity use for water supply," Energy, Elsevier, vol. 85(C), pages 415-432.
    4. Chen, Xiaoguang & Ye, Jingjing, 2017. "When the Wind Blows: Spatial Spillover Effects of Urban Air Pollution," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258256, Agricultural and Applied Economics Association.
    5. Wang, Yafei & Liang, Sai, 2013. "Carbon dioxide mitigation target of China in 2020 and key economic sectors," Energy Policy, Elsevier, vol. 58(C), pages 90-96.
    6. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    7. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    8. Wang, Yafei & Zhao, Hongyan & Li, Liying & Liu, Zhu & Liang, Sai, 2013. "Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis," Energy Policy, Elsevier, vol. 58(C), pages 312-318.
    9. Liang, Sai & Zhang, Tianzhu & Wang, Yafei & Jia, Xiaoping, 2012. "Sustainable urban materials management for air pollutants mitigation based on urban physical input–output model," Energy, Elsevier, vol. 42(1), pages 387-392.
    10. Vieira, Abel S. & Beal, Cara D. & Ghisi, Enedir & Stewart, Rodney A., 2014. "Energy intensity of rainwater harvesting systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 225-242.
    11. Geng, Wu & Ming, Zeng & Lilin, Peng & Ximei, Liu & Bo, Li & Jinhui, Duan, 2016. "China׳s new energy development: Status, constraints and reforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 885-896.
    12. Qu, Lili & Zhang, Tianzhu & Liang, Sai, 2013. "Waste management of urban agglomeration on a life cycle basis," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 47-53.
    13. Fan, Jing-Li & Kong, Ling-Si & Wang, Hang & Zhang, Xian, 2019. "A water-energy nexus review from the perspective of urban metabolism," Ecological Modelling, Elsevier, vol. 392(C), pages 128-136.
    14. Vilanova, Mateus Ricardo Nogueira & Magalhães Filho, Paulo & Balestieri, José Antônio Perrella, 2015. "Performance measurement and indicators for water supply management: Review and international cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1-12.
    15. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    16. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    17. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    18. Kate Smith & Shuming Liu & Yi Liu & Dragan Savic & Gustaf Olsson & Tian Chang & Xue Wu, 2016. "Impact of urban water supply on energy use in China: a provincial and national comparison," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(8), pages 1213-1233, December.
    19. Massimo Peri & Daniela Vandone & Lucia Baldi, 2017. "Volatility Spillover between Water, Energy and Food," Sustainability, MDPI, vol. 9(6), pages 1-16, June.
    20. Carvalho, Ariovaldo Lopes de & Antunes, Carlos Henggeler & Freire, Fausto & Henriques, Carla Oliveira, 2015. "A hybrid input–output multi-objective model to assess economic–energy–environment trade-offs in Brazil," Energy, Elsevier, vol. 82(C), pages 769-785.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yafei & Liang, Sai, 2013. "Carbon dioxide mitigation target of China in 2020 and key economic sectors," Energy Policy, Elsevier, vol. 58(C), pages 90-96.
    2. Liang, Sai & Zhang, Tianzhu & Wang, Yafei & Jia, Xiaoping, 2012. "Sustainable urban materials management for air pollutants mitigation based on urban physical input–output model," Energy, Elsevier, vol. 42(1), pages 387-392.
    3. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    4. Jin Zhang & David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, , vol. 37(1_suppl), pages 29-54, January.
    5. Wang, Yafei & Zhao, Hongyan & Li, Liying & Liu, Zhu & Liang, Sai, 2013. "Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis," Energy Policy, Elsevier, vol. 58(C), pages 312-318.
    6. Herrerias, M.J. & Liu, G., 2013. "Electricity intensity across Chinese provinces: New evidence on convergence and threshold effects," Energy Economics, Elsevier, vol. 36(C), pages 268-276.
    7. Chen, Xiude & Qin, Quande & Wei, Y.-M., 2016. "Energy productivity and Chinese local officials’ promotions: Evidence from provincial governors," Energy Policy, Elsevier, vol. 95(C), pages 103-112.
    8. Yuan, Jiahai & Xu, Yan & Hu, Zhaoguang, 2012. "Delivering power system transition in China," Energy Policy, Elsevier, vol. 50(C), pages 751-772.
    9. Yuan, Jiahai & Xu, Yan & Hu, Zhen & Yu, Zhongfu & Liu, Jiangyan & Hu, Zhaoguang & Xu, Ming, 2012. "Managing electric power system transition in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5660-5677.
    10. Zhang, Dayong & Cao, Hong & Wei, Yi-Ming, 2016. "Identifying the determinants of energy intensity in China: A Bayesian averaging approach," Applied Energy, Elsevier, vol. 168(C), pages 672-682.
    11. Li, Ke & Lin, Boqiang, 2014. "The nonlinear impacts of industrial structure on China's energy intensity," Energy, Elsevier, vol. 69(C), pages 258-265.
    12. Fang, Yiping & Deng, Wei, 2011. "The critical scale and section management of cascade hydropower exploitation in Southwestern China," Energy, Elsevier, vol. 36(10), pages 5944-5953.
    13. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
    14. Zhang, Jing & Deng, Shihuai & Shen, Fei & Yang, Xinyao & Liu, Guodong & Guo, Hang & Li, Yuanwei & Hong, Xiao & Zhang, Yanzong & Peng, Hong & Zhang, Xiaohong & Li, Li & Wang, Yingjun, 2011. "Modeling the relationship between energy consumption and economy development in China," Energy, Elsevier, vol. 36(7), pages 4227-4234.
    15. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    16. Liang, Sai & Zhang, Tianzhu, 2011. "What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province," Energy Policy, Elsevier, vol. 39(11), pages 7078-7083.
    17. Li, Fangyi & Song, Zhouying & Liu, Weidong, 2014. "China's energy consumption under the global economic crisis: Decomposition and sectoral analysis," Energy Policy, Elsevier, vol. 64(C), pages 193-202.
    18. Wang, Nannan & Chang, Yen-Chiang, 2014. "The evolution of low-carbon development strategies in China," Energy, Elsevier, vol. 68(C), pages 61-70.
    19. Qu, Lili & Zhang, Tianzhu & Liang, Sai, 2013. "Waste management of urban agglomeration on a life cycle basis," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 47-53.
    20. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:12:p:6960-6966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.