IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v69y2010i9p1805-1813.html
   My bibliography  Save this article

An improved input-output model for energy analysis: A case study of Suzhou

Author

Listed:
  • Liang, Sai
  • Wang, Can
  • Zhang, Tianzhu

Abstract

There are some disadvantages in current input-output models for energy. This study proposes a methodology named hybrid physical input-output model for energy analysis (HPIOMEA) to study energy metabolism, taking Suzhou in China as an example. The HPIOMEA calculates energy resources in both energetic and mass units and air pollutants in mass units simultaneously from the perspective of energy balance and mass balance, which is beyond the reach of current input-output tables for energy. In addition, it can validate the rationality of the table compilation and energy projection, and illustrate the direct and accumulative effects of energy and air pollutants. The HPIOMEA reflects the physical reality of energy metabolism much better. In addition, future work on energy analysis is proposed.

Suggested Citation

  • Liang, Sai & Wang, Can & Zhang, Tianzhu, 2010. "An improved input-output model for energy analysis: A case study of Suzhou," Ecological Economics, Elsevier, vol. 69(9), pages 1805-1813, July.
  • Handle: RePEc:eee:ecolec:v:69:y:2010:i:9:p:1805-1813
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(10)00162-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weisz, Helga & Duchin, Faye, 2006. "Physical and monetary input-output analysis: What makes the difference?," Ecological Economics, Elsevier, vol. 57(3), pages 534-541, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    2. Wang, Yafei & Zhao, Hongyan & Li, Liying & Liu, Zhu & Liang, Sai, 2013. "Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis," Energy Policy, Elsevier, vol. 58(C), pages 312-318.
    3. Edgar Battand Towa Kouokam & Vanessa Zeller & Wouter Achten, 2019. "Input-output models and waste management analysis: A critical review," ULB Institutional Repository 2013/359535, ULB -- Universite Libre de Bruxelles.
    4. Choi, Jun-Ki & Bakshi, Bhavik R. & Haab, Timothy, 2010. "Effects of a carbon price in the U.S. on economic sectors, resource use, and emissions: An input-output approach," Energy Policy, Elsevier, vol. 38(7), pages 3527-3536, July.
    5. Boehm, Rebecca & Wilde, Parke E. & Ver Ploeg, Michele & Costello, Christine & Cash, Sean B., 2018. "A Comprehensive Life Cycle Assessment of Greenhouse Gas Emissions from U.S. Household Food Choices," Food Policy, Elsevier, vol. 79(C), pages 67-76.
    6. Jean-Marc Douguet & Martin O 'Connor & Jean-Pierre Doussoulin & Philippe Lanceleur & Karine Philippot, 2014. "L'Empreinte Écologique Du Parc Naturel De La Haute Vallée De Chevreuse : Du Concept À La Construction De L'Outil," Working Papers hal-01243385, HAL.
    7. Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.
    8. Bösch, Matthias & Elsasser, Peter & Rock, Joachim & Rüter, Sebastian & Weimar, Holger & Dieter, Matthias, 2017. "Costs and carbon sequestration potential of alternative forest management measures in Germany," Forest Policy and Economics, Elsevier, vol. 78(C), pages 88-97.
    9. Florian Dierickx & Arnaud Diemer, 2020. "Challenging a Methodology to Analyse the Cycling of Materials and Induced Energy use Over Time," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 26(4), pages 106-124, November.
    10. Turner, Karen & Lenzen, Manfred & Wiedmann, Thomas & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 1: A technical note on combining input-output and ecological footprint analysis," Ecological Economics, Elsevier, vol. 62(1), pages 37-44, April.
    11. Erik Dietzenbacher & Umed Temurshoev, 2012. "Input-output impact analysis in current or constant prices: does it matter?," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-18, December.
    12. Wang, Yafei & Liang, Sai, 2013. "Carbon dioxide mitigation target of China in 2020 and key economic sectors," Energy Policy, Elsevier, vol. 58(C), pages 90-96.
    13. Liang, Sai & Zhang, Tianzhu & Wang, Yafei & Jia, Xiaoping, 2012. "Sustainable urban materials management for air pollutants mitigation based on urban physical input–output model," Energy, Elsevier, vol. 42(1), pages 387-392.
    14. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    15. Matthias Pfaff & Rainer Walz, 2021. "Analysis of the development and structural drivers of raw‐material use in Germany," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1063-1075, August.
    16. Dewulf, Jo & Blengini, Gian Andrea & Pennington, David & Nuss, Philip & Nassar, Nedal T., 2016. "Criticality on the international scene: Quo vadis?," Resources Policy, Elsevier, vol. 50(C), pages 169-176.
    17. Thomas Wiedmann & Heinz Schandl & Daniel Moran, 2015. "The footprint of using metals: new metrics of consumption and productivity," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(3), pages 369-388, July.
    18. Hanspeter Wieland & Stefan Giljum & Nina Eisenmenger & Dominik Wiedenhofer & Martin Bruckner & Anke Schaffartzik & Anne Owen, 2020. "Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 548-563, June.
    19. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    20. Merciai, Stefano & Heijungs, Reinout, 2014. "Balance issues in monetary input–output tables," Ecological Economics, Elsevier, vol. 102(C), pages 69-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:69:y:2010:i:9:p:1805-1813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.