IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Impact of urban water supply on energy use in China: a provincial and national comparison

Listed author(s):
  • Kate Smith

    (Tsinghua University)

  • Shuming Liu

    ()

    (Tsinghua University
    Tsinghua University)

  • Yi Liu

    (Tsinghua University)

  • Dragan Savic

    (University of Exeter)

  • Gustaf Olsson

    (Lund University)

  • Tian Chang

    (Tsinghua University)

  • Xue Wu

    (Tsinghua University)

Registered author(s):

    Abstract To reduce greenhouse gas (GHG) emissions and help mitigate climate change, urban water systems need to be adapted so that electrical energy use is minimised. In this study, energy data from 2011 was used to quantify energy use in China’s urban water supply sector. The objective was to calculate the energy co-benefits of urban water conservation policies and compare energy use between China and other countries. The study investigated influencing factors with the aim of informing the development of energy efficient urban water infrastructure. The average energy use per cubic metre and per capita for urban water supply in China in 2011 was 0.29 kWh/m3 and 33.2 kWh/cap year, respectively. Total GHG emissions associated with energy use in the urban water supply sector were 7.63 MtCO2e, or carbon dioxide equivalent. Calculations using these indicators showed significant energy savings could result from water conservation measures. A comparison between provinces of China showed a direct correlation between energy intensity of urban water supply and the population served per unit length of pipe. This may imply energy and emission intensity can be reduced if more densely populated areas are supplied by a corresponding pipe density, rather than by a low-density network operating at higher flow rates. This study also found that while the percentage of electrical energy used for urban water supply tended to increase with the percentage of population served, this increase was slower where water supply was more energy efficient and where a larger percentage of population was already supplied.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://link.springer.com/10.1007/s11027-015-9648-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Mitigation and Adaptation Strategies for Global Change.

    Volume (Year): 21 (2016)
    Issue (Month): 8 (December)
    Pages: 1213-1233

    as
    in new window

    Handle: RePEc:spr:masfgc:v:21:y:2016:i:8:d:10.1007_s11027-015-9648-x
    DOI: 10.1007/s11027-015-9648-x
    Contact details of provider: Web page: http://www.springer.com

    Order Information: Web: http://www.springer.com/economics/journal/11027

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Yang, Hong & Zhou, Yuan & Liu, Junguo, 2009. "Land and water requirements of biofuel and implications for food supply and the environment in China," Energy Policy, Elsevier, vol. 37(5), pages 1876-1885, May.
    2. Li, Xin & Feng, Kuishuang & Siu, Yim Ling & Hubacek, Klaus, 2012. "Energy-water nexus of wind power in China: The balancing act between CO2 emissions and water consumption," Energy Policy, Elsevier, vol. 45(C), pages 440-448.
    3. Venkatesh, G. & Brattebø, Helge, 2011. "Energy consumption, costs and environmental impacts for urban water cycle services: Case study of Oslo (Norway)," Energy, Elsevier, vol. 36(2), pages 792-800.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:21:y:2016:i:8:d:10.1007_s11027-015-9648-x. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.