IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v280y2023ics0360544223014159.html
   My bibliography  Save this article

Analysis of the effect of formation dip angle and injection pressure on the injectivity and migration of CO2 during storage

Author

Listed:
  • Jing, Jing
  • Yang, Yanlin
  • Cheng, Jianmei
  • Ding, Zhaojing
  • Wang, Dandan
  • Jing, Xianwen

Abstract

Carbon dioxide (CO2) geological storage (CGS) can help realize the plan of “Carbon Neutrality”. Injection capacity and storage safety are crucial factors in evaluating CO2 storage efficiency. Deep saline aquifers are major sites for CGS. This study focused on evaluating the CO2 injection amount, migration safety and leakage risk. A three-dimensional (3D) model of the Shenhua CO2 capture and storage (CCS) project in the Ordos Basin, China, was established to discuss the impact of injection pressure (1.3P (equal to 1.3 times the top reservoir formation hydrostatic pressure), 1.4P, and 1.5P) and formation dip angle (0°, 5°, 10°, 15°) with fault on the total CO2 injection and migration safety. Twelve schemes were designed for simulation. Based on the results, faulting provided a pathway for CO2 leakage, posing a threat to CO2 storage safety. Injection pressure and formation dip angle had significant effects on injectivity and migration during CO2 storage. The influence of the injection pressure on the CO2 injection amount was more evident than that of the dip angle, though formation dip angle had a significant impact on the CO2 migration during storage. Increasing the injection pressure and formation dip angle increased the gas and dissolved-phase CO2 migration and decreased the CO2 leakage time and storage safety. The CO2 leakage through the fault occurred after 160, 110 and 80 years in a 15° sloping formation with 1.3P, 1.4P, and 1.5P, respectively. The CO2 injection amount was the largest for the 0° formation with 1.5P. These results provide fundamental information for CO2 storage safety and capacity, suggesting that un-faulted reservoirs with smaller dip angles should be selected for CGS projects; however, larger injection pressures can result in greater injection amounts, decreasing the migration safety of CO2 during storage.

Suggested Citation

  • Jing, Jing & Yang, Yanlin & Cheng, Jianmei & Ding, Zhaojing & Wang, Dandan & Jing, Xianwen, 2023. "Analysis of the effect of formation dip angle and injection pressure on the injectivity and migration of CO2 during storage," Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223014159
    DOI: 10.1016/j.energy.2023.128021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223014159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fugang Wang & Jing Jing & Yanlin Yang & Hongyan Liu & Zhaojun Sun & Tianfu Xu & Hailong Tian, 2017. "Impacts of injection pressure of a dip‐angle sloping strata reservoir with low porosity and permeability on CO 2 injection amount," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 92-105, February.
    2. Jing, Jing & Yang, Yanlin & Tang, Zhonghua, 2021. "Assessing the influence of injection temperature on CO2 storage efficiency and capacity in the sloping formation with fault," Energy, Elsevier, vol. 215(PA).
    3. Rashid Mohamed Mkemai & Gong Bin, 2020. "A modeling and numerical simulation study of enhanced CO2 sequestration into deep saline formation: a strategy towards climate change mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 901-927, May.
    4. Ren, Bo & Ren, Shaoran & Zhang, Liang & Chen, Guoli & Zhang, Hua, 2016. "Monitoring on CO2 migration in a tight oil reservoir during CCS-EOR in Jilin Oilfield China," Energy, Elsevier, vol. 98(C), pages 108-121.
    5. Dai, Zhenxue & Zhang, Ye & Bielicki, Jeffrey & Amooie, Mohammad Amin & Zhang, Mingkan & Yang, Changbing & Zou, Youqin & Ampomah, William & Xiao, Ting & Jia, Wei & Middleton, Richard & Zhang, Wen & Sun, 2018. "Heterogeneity-assisted carbon dioxide storage in marine sediments," Applied Energy, Elsevier, vol. 225(C), pages 876-883.
    6. Cai Li & Keni Zhang & Chaobin Guo & Jian Xie & Jing Zhao & Xia Li & Federico Maggi, 2017. "Impacts of relative permeability hysteresis on the reservoir performance in CO 2 storage in the Ordos Basin," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(2), pages 259-272, April.
    7. Masoud Ahmadinia & Seyed M. Shariatipour, 2021. "A study on the impact of storage boundary and caprock morphology on carbon sequestration in saline aquifers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 183-205, February.
    8. Zhang, Lisong & Zhang, Shiyan & Jiang, Weizhai & Wang, Zhiyuan & Li, Jing & Bian, Yinghui, 2018. "A mechanism of fluid exchange associated to CO2 leakage along activated fault during geologic storage," Energy, Elsevier, vol. 165(PB), pages 1178-1190.
    9. Yi-Ming Wei & Jia-Ning Kang & Lan-Cui Liu & Qi Li & Peng-Tao Wang & Juan-Juan Hou & Qiao-Mei Liang & Hua Liao & Shi-Feng Huang & Biying Yu, 2021. "A proposed global layout of carbon capture and storage in line with a 2 °C climate target," Nature Climate Change, Nature, vol. 11(2), pages 112-118, February.
    10. Siwen Wang & Yibo Wang & Yikang Zheng & Xu Chang & Jun Li & Rongshu Zeng, 2021. "Comparison of geological models for the simulation of CO2 migration: a case study in Ordos, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(2), pages 277-296, April.
    11. Cui, Guodong & Wang, Yi & Rui, Zhenhua & Chen, Bailian & Ren, Shaoran & Zhang, Liang, 2018. "Assessing the combined influence of fluid-rock interactions on reservoir properties and injectivity during CO2 storage in saline aquifers," Energy, Elsevier, vol. 155(C), pages 281-296.
    12. Bian, Jiang & Wang, Hongchao & Yang, Kairan & Chen, Junwen & Cao, Xuewen, 2022. "Spatial differences in pressure and heat transfer characteristics of CO2 hydrate with dissociation for geological CO2 storage," Energy, Elsevier, vol. 240(C).
    13. Fugang Wang & Jing Jing & Tianfu Xu & Yanlin Yang & Guangrong Jin, 2016. "Impacts of stratum dip angle on CO 2 geological storage amount and security," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(5), pages 682-694, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Jing & Yang, Yanlin & Tang, Zhonghua, 2021. "Assessing the influence of injection temperature on CO2 storage efficiency and capacity in the sloping formation with fault," Energy, Elsevier, vol. 215(PA).
    2. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    3. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    4. Zhang, Kai & Lau, Hon Chung & Bokka, Harsha Kumar & Hadia, Nanji J., 2022. "Decarbonizing the power and industry sectors in India by carbon capture and storage," Energy, Elsevier, vol. 249(C).
    5. Wang, H.D. & Chen, Y. & Ma, G.W., 2020. "Effects of capillary pressures on two-phase flow of immiscible carbon dioxide enhanced oil recovery in fractured media," Energy, Elsevier, vol. 190(C).
    6. Zhang, Lisong & Jiang, Menggang & Yang, Qingchun & Chen, Shaoying & Wang, Wei, 2023. "Evolution of fault-induced salt precipitation due to convection of CO2 and brine along fault during CO2 storage in multilayered saline aquifer-caprock," Energy, Elsevier, vol. 278(C).
    7. Zhang, Lisong & Zhang, Shiyan & Jiang, Weizhai & Wang, Zhiyuan & Li, Jing & Bian, Yinghui, 2018. "A mechanism of fluid exchange associated to CO2 leakage along activated fault during geologic storage," Energy, Elsevier, vol. 165(PB), pages 1178-1190.
    8. Emad A. Al†Khdheeawi & Stephanie Vialle & Ahmed Barifcani & Mohammad Sarmadivaleh & Yihuai Zhang & Stefan Iglauer, 2018. "Impact of salinity on CO2 containment security in highly heterogeneous reservoirs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(1), pages 93-105, February.
    9. Yanqing Wang & Liang Zhang & Shaoran Ren & Bo Ren & Bailian Chen & Jun Lu, 2020. "Identification of potential CO2 leakage pathways and mechanisms in oil reservoirs using fault tree analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 331-346, April.
    10. Kun Qian & Shenglai Yang & Hongen Dou & Qian Wang & Lu Wang & Yu Huang, 2018. "Experimental Investigation on Microscopic Residual Oil Distribution During CO 2 Huff-and-Puff Process in Tight Oil Reservoirs," Energies, MDPI, vol. 11(10), pages 1-16, October.
    11. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    12. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    14. Kamal Jawher Khudaida & Diganta Bhusan Das, 2020. "A Numerical Analysis of the Effects of Supercritical CO 2 Injection on CO 2 Storage Capacities of Geological Formations," Clean Technol., MDPI, vol. 2(3), pages 1-32, September.
    15. Xu, Liang & Li, Qi & Myers, Matthew & Cao, Xiaomin, 2023. "Investigation of the enhanced oil recovery mechanism of CO2 synergistically with nanofluid in tight glutenite," Energy, Elsevier, vol. 273(C).
    16. Mahmoodpour, Saeed & Amooie, Mohammad Amin & Rostami, Behzad & Bahrami, Flora, 2020. "Effect of gas impurity on the convective dissolution of CO2 in porous media," Energy, Elsevier, vol. 199(C).
    17. Mrityunjay Singh & Saeed Mahmoodpour & Cornelia Schmidt-Hattenberger & Ingo Sass & Michael Drews, 2023. "Influence of Reservoir Heterogeneity on Simultaneous Geothermal Energy Extraction and CO 2 Storage," Sustainability, MDPI, vol. 16(1), pages 1-23, December.
    18. Masoud Ahmadinia & Seyed M. Shariatipour, 2021. "A study on the impact of storage boundary and caprock morphology on carbon sequestration in saline aquifers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 183-205, February.
    19. Ren, Bo & Trevisan, Luca, 2020. "Characterization of local capillary trap clusters in storage aquifers," Energy, Elsevier, vol. 193(C).
    20. Masood S. Alivand & Omid Mazaheri & Yue Wu & Ali Zavabeti & Andrew J. Christofferson & Nastaran Meftahi & Salvy P. Russo & Geoffrey W. Stevens & Colin A. Scholes & Kathryn A. Mumford, 2022. "Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223014159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.