IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i1d10.1007_s10668-023-03894-7.html
   My bibliography  Save this article

Efficiency analysis of China’s energy utilization system based on the robust network DEA-Malmquist productivity index with common weights

Author

Listed:
  • Jingjing Qu

    (Shandong University)

  • Xiaohong Liu

    (Shandong University)

  • Baohui Wang

    (Shandong University)

Abstract

Improving energy utilization is of great significance for energy saving and emissions reduction, so this paper explores the efficiency of China’s energy utilization. The energy utilization in this study is considered as a two-stage network system consisting of the energy processing and conversion stage and the economic growth stage instead of regarding it as a ‘black box’ without the internal transformation like in most existing studies. Uncertainty analysis of system efficiency is necessary due to the underlying data uncertainty in production variables which is evitable, whereas the energy or environmental efficiency in academia is normally evaluated on the premise of no data uncertainties. This paper uses robust optimization to handle the data uncertainty during efficiency analysis, involves the common set of weights method to assure the comparability of static and intertemporal efficiency, and then proposes the robust network data envelopment analysis-Malmquist productivity index with common weights. The proposed method is applied to the efficiency analysis of China’s energy utilization system during 2007–2018. Results show that the efficiency of the energy utilization system decreases except for 2012–2013, and the economic growth stage efficiency reduces by 12.32%, while the energy processing and conversion stage efficiency grows by 11.93%. Technical progress is the driver of efficiency improvement for both the energy utilization system and its two stages. Besides, the sensitivity analysis shows that the proposed method is resistant to a certain degree of data disturbance compared to the deterministic model not considering uncertainty.

Suggested Citation

  • Jingjing Qu & Xiaohong Liu & Baohui Wang, 2025. "Efficiency analysis of China’s energy utilization system based on the robust network DEA-Malmquist productivity index with common weights," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 1041-1069, January.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:1:d:10.1007_s10668-023-03894-7
    DOI: 10.1007/s10668-023-03894-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03894-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03894-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Yong & Liao, Nuo & Zhou, Ya, 2018. "Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN," Energy, Elsevier, vol. 142(C), pages 79-89.
    2. Yang, Wei & Shi, Jinfeng & Qiao, Han & Shao, Yanmin & Wang, Shouyang, 2017. "Regional technical efficiency of Chinese Iron and steel industry based on bootstrap network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 14-24.
    3. Kao, Chiang, 2010. "Malmquist productivity index based on common-weights DEA: The case of Taiwan forests after reorganization," Omega, Elsevier, vol. 38(6), pages 484-491, December.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    6. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    7. Liang Liang & Feng Yang & Wade Cook & Joe Zhu, 2006. "DEA models for supply chain efficiency evaluation," Annals of Operations Research, Springer, vol. 145(1), pages 35-49, July.
    8. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    9. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    10. Yi-Ming Wei & Hua Liao (ed.), 2016. "Energy Economics: Energy Efficiency in China," CEEP-BIT Books, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology, number b5, december.
    11. Chen, Yao & Cook, Wade D. & Zhu, Joe, 2010. "Deriving the DEA frontier for two-stage processes," European Journal of Operational Research, Elsevier, vol. 202(1), pages 138-142, April.
    12. Chu, Junfei & Zhu, Joe, 2021. "Production scale-based two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 294(1), pages 283-294.
    13. Zhao, Haoran & Guo, Sen & Zhao, Huiru, 2019. "Provincial energy efficiency of China quantified by three-stage data envelopment analysis," Energy, Elsevier, vol. 166(C), pages 96-107.
    14. Huang, Junbing & Du, Dan & Hao, Yu, 2017. "The driving forces of the change in China's energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations," Economic Modelling, Elsevier, vol. 65(C), pages 41-50.
    15. Chao Lu & Jie Tao & Qiuxian An & Xiaodong Lai, 2020. "A second-order cone programming based robust data envelopment analysis model for the new-energy vehicle industry," Annals of Operations Research, Springer, vol. 292(1), pages 321-339, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    2. AGRELL, Per & HATAMI-MARBINI, Adel, 2011. "Frontier-based performance analysis models for supply chain management; state of the art and research directions," LIDAM Discussion Papers CORE 2011069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Huang, Chin-wei & Ho, Foo Nin & Chiu, Yung-ho, 2014. "Measurement of tourist hotels׳ productive efficiency, occupancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan," Omega, Elsevier, vol. 48(C), pages 49-59.
    4. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    5. An, Qingxian & Chen, Haoxun & Xiong, Beibei & Wu, Jie & Liang, Liang, 2017. "Target intermediate products setting in a two-stage system with fairness concern," Omega, Elsevier, vol. 73(C), pages 49-59.
    6. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    7. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    8. HATAMI-MARBINI, Adel & AGRELL, Per & AGHAYI, Nazila, 2013. "Imprecise data envelopment analysis for the two-stage process," LIDAM Discussion Papers CORE 2013004, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Li, Wanghong & Li, Zhepeng & Liang, Liang & Cook, Wade D., 2017. "Evaluation of ecological systems and the recycling of undesirable outputs: An efficiency study of regions in China," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 77-86.
    10. Wen, Yao & An, Qingxian & Gong, Yeming & Wu, Pengkun, 2024. "Structural rearrangement of the network system from an efficiency perspective: A silver lining of profit improvement," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1001-1011.
    11. Monireh Jahani Sayyad Noveiri & Sohrab Kordrostami & Alireza Amirteimoori, 2022. "Performance analysis of sustainable supply networks with bounded, discrete, and joint factors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 238-270, January.
    12. Yong Zha & Jun Wang & Nannan Liang & Chuiri Zhou, 2016. "Utility-based two-stage models with fairness concern," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 877-900, December.
    13. Li, Xiang, 2017. "A fair evaluation of certain stage in a two-stage structure: revisiting the typical two-stage DEA approaches," Omega, Elsevier, vol. 68(C), pages 155-167.
    14. Yang, Jiawei & Li, Yuanyu & Fang, Lei, 2023. "Financing capacity planning with environmental considerations: A non-parametric analysis," Omega, Elsevier, vol. 118(C).
    15. Hirofumi Fukuyama & William L. Weber, 2017. "Japanese Bank Productivity, 2007–2012: A Dynamic Network Approach," Pacific Economic Review, Wiley Blackwell, vol. 22(4), pages 649-676, October.
    16. Xianmei Wang & Hanhui Hu, 2017. "Sustainability in Chinese Higher Educational Institutions’ Social Science Research: A Performance Interface toward Efficiency," Sustainability, MDPI, vol. 9(11), pages 1-18, October.
    17. Milan Andrejić, 2023. "Modeling Retail Supply Chain Efficiency: Exploration and Comparative Analysis of Different Approaches," Mathematics, MDPI, vol. 11(7), pages 1-24, March.
    18. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    19. Li, Yongjun & Chen, Yao & Liang, Liang & Xie, Jianhui, 2012. "DEA models for extended two-stage network structures," Omega, Elsevier, vol. 40(5), pages 611-618.
    20. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:1:d:10.1007_s10668-023-03894-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.