IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v78y2021ics0038012121000525.html
   My bibliography  Save this article

Spatial dependence, agglomeration externalities and the convergence of carbon productivity

Author

Listed:
  • Shen, Neng
  • Peng, Hui
  • Wang, Qunwei

Abstract

By combining the extended slack based measurement (SBM) model directed distance function and the meta-constrained production function to measure China's carbon productivity, this paper studies the spatial spillover effects and convergence characteristics of carbon productivity. According to the results, carbon productivity showed obvious viscosity and spatial dependence in adjacent regions. China's carbon productivity had spatial conditional β-convergence and club convergence effects. Specifically, agglomeration externalities constituted an important mechanism for increasing carbon productivity and realizing the convergence thereof. Different agglomeration forms under different agglomeration degrees corresponded to different carbon productivity levels; with an increase in the degree of agglomeration, the emission reduction effect of specialized agglomeration diminished, while that of diversified agglomeration increased. Furthermore, depending on suitable agglomeration degrees, the emission reduction effect of specialized agglomeration could coexist with that of diversified agglomeration. In terms of regional distribution, in East China, both specialized agglomeration and diversified agglomeration presented relatively significant emission reduction effects. In contrast, in Central China and West China, only specialized agglomeration showed a weak emission reduction effect.

Suggested Citation

  • Shen, Neng & Peng, Hui & Wang, Qunwei, 2021. "Spatial dependence, agglomeration externalities and the convergence of carbon productivity," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
  • Handle: RePEc:eee:soceps:v:78:y:2021:i:c:s0038012121000525
    DOI: 10.1016/j.seps.2021.101060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012121000525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2021.101060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency: Some clarifications," European Journal of Operational Research, Elsevier, vol. 206(3), pages 702-702, November.
    2. Quah, Danny T, 1996. "Twin Peaks: Growth and Convergence in Models of Distribution Dynamics," Economic Journal, Royal Economic Society, vol. 106(437), pages 1045-1055, July.
    3. Quah, Danny, 1997. "Empirics for growth and distribution," LSE Research Online Documents on Economics 2138, London School of Economics and Political Science, LSE Library.
    4. Quah, Danny, 1995. "Empirics for Economic Growth and Convergence," CEPR Discussion Papers 1140, C.E.P.R. Discussion Papers.
    5. Zhang, Lulu & Xiong, Lichun & Cheng, Baodong & Yu, Chang, 2018. "How does foreign trade influence China’s carbon productivity? Based on panel spatial lag model analysis," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 171-179.
    6. Ezcurra, Roberto, 2007. "Is there cross-country convergence in carbon dioxide emissions?," Energy Policy, Elsevier, vol. 35(2), pages 1363-1372, February.
    7. Tone, Kaoru & Toloo, Mehdi & Izadikhah, Mohammad, 2020. "A modified slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 287(2), pages 560-571.
    8. Tzeremes, Nickolaos G., 2014. "The effect of human capital on countries’ economic efficiency," Economics Letters, Elsevier, vol. 124(1), pages 127-131.
    9. Mark Strazicich & John List, 2003. "Are CO 2 Emission Levels Converging Among Industrial Countries?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(3), pages 263-271, March.
    10. Danny Quah, 1996. "Twin Peaks: Growth and Convergence in Models of Distribution Dynamics," CEP Discussion Papers dp0280, Centre for Economic Performance, LSE.
    11. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    12. Hao, Yu & Liao, Hua & Wei, Yi-Ming, 2015. "Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," Applied Energy, Elsevier, vol. 142(C), pages 229-239.
    13. Jakob, Michael & Haller, Markus & Marschinski, Robert, 2012. "Will history repeat itself? Economic convergence and convergence in energy use patterns," Energy Economics, Elsevier, vol. 34(1), pages 95-104.
    14. Jin, Mengjie & Lin, Kun-Chin & Shi, Wenming & Lee, Paul T.W. & Li, Kevin X., 2020. "Impacts of high-speed railways on economic growth and disparity in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 158-171.
    15. Piotr Pachura, 2010. "Clustering and Networking in Regional Policy," Contributions to Economics, in: Regional Cohesion, chapter 0, pages 7-31, Springer.
    16. Danny Quah, 1995. "Empirics for Economic Growth and Convergence," CEP Discussion Papers dp0253, Centre for Economic Performance, LSE.
    17. Wang, Guofeng & Deng, Xiangzheng & Wang, Jingyu & Zhang, Fan & Liang, Shiqi, 2019. "Carbon emission efficiency in China: A spatial panel data analysis," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    18. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    19. Ordás Criado, C. & Grether, J.-M., 2011. "Convergence in per capita CO2 emissions: A robust distributional approach," Resource and Energy Economics, Elsevier, vol. 33(3), pages 637-665, September.
    20. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    21. Joseph Aldy, 2006. "Per Capita Carbon Dioxide Emissions: Convergence or Divergence?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 533-555, April.
    22. Jobert, Thomas & Karanfil, Fatih & Tykhonenko, Anna, 2010. "Convergence of per capita carbon dioxide emissions in the EU: Legend or reality?," Energy Economics, Elsevier, vol. 32(6), pages 1364-1373, November.
    23. Kumar, Surender & Jain, Rakesh Kumar, 2019. "Carbon-sensitive meta-productivity growth and technological gap: An empirical analysis of Indian thermal power sector," Energy Economics, Elsevier, vol. 81(C), pages 104-116.
    24. Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
    25. Wang, Yan & Shen, Neng, 2016. "Environmental regulation and environmental productivity: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 758-766.
    26. Joseph E. Aldy, 2007. "Divergence in State-Level Per Capita Carbon Dioxide Emissions," Land Economics, University of Wisconsin Press, vol. 83(3), pages 353-369.
    27. Quah, Danny, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," CEPR Discussion Papers 1586, C.E.P.R. Discussion Papers.
    28. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    29. Herrerias, M.J., 2013. "The environmental convergence hypothesis: Carbon dioxide emissions according to the source of energy," Energy Policy, Elsevier, vol. 61(C), pages 1140-1150.
    30. Sueyoshi, Toshiyuki & Goto, Mika & Wang, Derek, 2017. "Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces," Energy Economics, Elsevier, vol. 67(C), pages 554-571.
    31. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    32. Quah, Danny, 1995. "Empirics for economic growth and convergence," LSE Research Online Documents on Economics 2136, London School of Economics and Political Science, LSE Library.
    33. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    34. Wang, Juan & Zhang, Kezhong, 2014. "Convergence of carbon dioxide emissions in different sectors in China," Energy, Elsevier, vol. 65(C), pages 605-611.
    35. Quah, Danny, 1996. "Twin peaks : growth and convergence in models of distribution dynamics," LSE Research Online Documents on Economics 2278, London School of Economics and Political Science, LSE Library.
    36. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    37. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2020. "Natural resource abundance, resource industry dependence and economic green growth in China," Resources Policy, Elsevier, vol. 68(C).
    38. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    39. Danny Quah, 1997. "Empirics for Growth and Distribution," CEP Discussion Papers dp0324, Centre for Economic Performance, LSE.
    40. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    41. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.
    42. Quah, Danny T, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," Journal of Economic Growth, Springer, vol. 2(1), pages 27-59, March.
    43. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Hui & Lu, Yaobin & Wang, Qunwei, 2023. "How does heterogeneous industrial agglomeration affect the total factor energy efficiency of China's digital economy," Energy, Elsevier, vol. 268(C).
    2. Kuang, Hewu & Akmal, Zeeshan & Li, Feifei, 2022. "Measuring the effects of green technology innovations and renewable energy investment for reducing carbon emissions in China," Renewable Energy, Elsevier, vol. 197(C), pages 1-10.
    3. Li, Chengyu & Wang, Qunwei & Zhou, Peng, 2023. "Does the “resource curse” have a spatial spillover effect? Evidence from China," Resources Policy, Elsevier, vol. 81(C).
    4. Xie, Qichang & Ma, Di & Raza, Muhammad Yousaf & Tang, Songlin & Bai, Dingchuan, 2023. "Toward carbon peaking and neutralization: The heterogeneous stochastic convergence of CO2 emissions and the role of digital inclusive finance," Energy Economics, Elsevier, vol. 125(C).
    5. Xu, Lan & Yang, Jun & Cheng, Jixin & Dong, Hanghang, 2022. "How has China's low-carbon city pilot policy influenced its CO2 abatement costs? Analysis from the perspective of the shadow price," Energy Economics, Elsevier, vol. 115(C).
    6. Wenhao Qi & Changxing Song & Meng Sun & Liguo Wang & Youcheng Han, 2022. "Sustainable Growth Drivers: Unveiling the Role Played by Carbon Productivity," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    7. Meng Sun & Yue Zhang & Yaqi Hu & Jiayi Zhang, 2022. "Spatial Convergence of Carbon Productivity: Theoretical Analysis and Chinese Experience," IJERPH, MDPI, vol. 19(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    2. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    3. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    4. Rafael Morales-Lage & Aurelia Bengochea-Morancho & Mariam Camarero & Inmaculada Martínez-Zarzoso, 2017. "Stochastic and club convergence of sectoral CO2 emissions in the European Union," Working Papers 2017/01, Economics Department, Universitat Jaume I, Castellón (Spain).
    5. LAWSON, Laté A. & MARTINO, Roberto & NGUYEN-VAN, Phu, 2020. "Environmental convergence and environmental Kuznets curve: A unified empirical framework," Ecological Modelling, Elsevier, vol. 437(C).
    6. Edy Yusuf Agung Gunanto & Tri Wahyu & Jaka Aminata & Banatul Hayati, 2021. "Convergence CO2 Emission in ASEAN Countries: Augmented Green Solow Model Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 572-578.
    7. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    8. Peng Bin, 2016. "Dynamic Development of Regional Disparity in Mainland China: An Experimental Study Based on a Multidimensional Index," Sustainability, MDPI, vol. 8(12), pages 1-28, December.
    9. Song, Yang & Liu, Dayu & Wang, Qiaoru, 2021. "Identifying characteristic changes in club convergence of China's urban pollution emission: A spatial-temporal feature analysis," Energy Economics, Elsevier, vol. 98(C).
    10. Liu, Chang & Hong, Tao & Li, Huaifeng & Wang, Lili, 2018. "From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China," Energy Policy, Elsevier, vol. 121(C), pages 300-313.
    11. Firat Emir & Mehmet Balcilar & Muhammad Shahbaz, 2018. "Inequality in Carbon Intensity in EU-28: Analysis Based on Club Convergence," Working Papers 15-38, Eastern Mediterranean University, Department of Economics.
    12. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
    13. Wu, Jian-Xin & He, Ling-Yun & Zhang, ZhongXiang, 2019. "Does China Fall into Poverty-Environment Traps? Evidence from Long-term Income Dynamics and Urban Air Pollution," ETA: Economic Theory and Applications 285027, Fondazione Eni Enrico Mattei (FEEM).
    14. Wu, Jian-Xin & He, Ling-Yun & Zhang, ZhongXiang, 2022. "On the co-evolution of PM2.5 concentrations and income in China: A joint distribution dynamics approach," Energy Economics, Elsevier, vol. 105(C).
    15. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    16. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Examining eco-efficiency convergence of European Industries.The existence of technological spillovers within a metafrontier framework," MPRA Paper 94286, University Library of Munich, Germany.
    17. Mahmoud A. El-Gamal & Deockhyun Ryu, 2013. "Nonstationarity and Stochastic Stability of Relative Income Clubs," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(4), pages 756-775, December.
    18. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    19. Jonas Grafström, 2018. "Divergence of renewable energy invention efforts in Europe: an econometric analysis based on patent counts," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 829-859, October.
    20. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:78:y:2021:i:c:s0038012121000525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.