IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i8d10.1007_s10668-023-03443-2.html
   My bibliography  Save this article

Club convergence in per capita carbon dioxide emissions across Indian states

Author

Listed:
  • Vaseem Akram

    (Indian Institute of Management Jammu)

  • Badri Narayan Rath

    (Indian Institute of Technology Hyderabad)

  • Pradipta Kumar Sahoo

    (School of Social, Financial & Human Sciences, Kalinga Institute of Industrial Technology)

Abstract

Although several studies examine the convergence of per capita carbon dioxide (CO2) at the country level, research at the regional level is scarce except in countries like China and the USA. This study bridges this research gap by considering India's regional-level CO2 emissions convergence. In particular, this study proposes to undercover the convergence patterns of carbon emissions towards designing effective carbon reduction policies in the future at the regional level in India. Addressing this research is vital since this question is closely allied with fairness in the distribution of per capita emissions. In order to achieve the stated objective, this study first computes per capita CO2 emissions. Then, it uses the convergence notion to analyse the CO2 emissions in the case of 16 Indian states from 2003–04 to 2018–19. By employing Phillips and Sul's clustering procedure, this study supports the presence of overall divergence when all 16 Indian states are considered as a group. This suggests that all states together are not forming a single steady state rather, they are forming multiple steady (or club convergence) due to heterogeneity in per capita CO2 emissions. Moreover, 16 states cluster into three clubs which have distinct transition paths. From the policy perspective, it is important for the government of India to target reducing per capita CO2 emissions by focusing on clusters of states in a phase-wise manner.

Suggested Citation

  • Vaseem Akram & Badri Narayan Rath & Pradipta Kumar Sahoo, 2024. "Club convergence in per capita carbon dioxide emissions across Indian states," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19907-19934, August.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03443-2
    DOI: 10.1007/s10668-023-03443-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03443-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03443-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Donggyu Sul, 2009. "Economic transition and growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1153-1185, November.
    2. Ordás Criado, C. & Valente, S. & Stengos, T., 2011. "Growth and pollution convergence: Theory and evidence," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 199-214, September.
    3. Peter C. B. Phillips & Donggyu Sul, 2007. "Transition Modeling and Econometric Convergence Tests," Econometrica, Econometric Society, vol. 75(6), pages 1771-1855, November.
    4. Karakaya, Etem & Alataş, Sedat & Yılmaz, Burcu, 2019. "Replication of Strazicich and List (2003): Are CO2 emission levels converging among industrial countries?," Energy Economics, Elsevier, vol. 82(C), pages 135-138.
    5. Burnett, J. Wesley, 2016. "Club convergence and clustering of U.S. energy-related CO2 emissions," Resource and Energy Economics, Elsevier, vol. 46(C), pages 62-84.
    6. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
    7. Camarero, Mariam & Picazo-Tadeo, Andrés J. & Tamarit, Cecilio, 2013. "Are the determinants of CO2 emissions converging among OECD countries?," Economics Letters, Elsevier, vol. 118(1), pages 159-162.
    8. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    9. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    10. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    11. Akram, Vaseem & Sahoo, Pradipta Kumar & Jangam, Bhushan Praveen, 2019. "Do shocks to electricity consumption revert to its equilibrium? Evidence from Indian states," Utilities Policy, Elsevier, vol. 61(C).
    12. Jobert, Thomas & Karanfil, Fatih & Tykhonenko, Anna, 2010. "Convergence of per capita carbon dioxide emissions in the EU: Legend or reality?," Energy Economics, Elsevier, vol. 32(6), pages 1364-1373, November.
    13. Joakim Westerlund & Syed Basher, 2008. "Testing for Convergence in Carbon Dioxide Emissions Using a Century of Panel Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(1), pages 109-120, May.
    14. Liao, Chun-Hsiung & Lu, Chin-Shan & Tseng, Po-Hsing, 2011. "Carbon dioxide emissions and inland container transport in Taiwan," Journal of Transport Geography, Elsevier, vol. 19(4), pages 722-728.
    15. Ekaterini Panopoulou & Theologos Pantelidis, 2009. "Club Convergence in Carbon Dioxide Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(1), pages 47-70, September.
    16. Bai, Caiquan & Feng, Chen & Du, Kerui & Wang, Yuansheng & Gong, Yuan, 2020. "Understanding spatial-temporal evolution of renewable energy technology innovation in China: Evidence from convergence analysis," Energy Policy, Elsevier, vol. 143(C).
    17. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    18. Christidou, Maria & Panagiotidis, Theodore & Sharma, Abhijit, 2013. "On the stationarity of per capita carbon dioxide emissions over a century," Economic Modelling, Elsevier, vol. 33(C), pages 918-925.
    19. James E. Payne & Stephanie Miller & Junsoo Lee & Myeong Hyeon Cho, 2014. "Convergence of per capita sulphur dioxide emissions across US states," Applied Economics, Taylor & Francis Journals, vol. 46(11), pages 1202-1211, April.
    20. James E. Payne, 2020. "The convergence of carbon dioxide emissions: a survey of the empirical literature," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 47(7), pages 1757-1785, April.
    21. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    22. Nazlioglu, Saban & Payne, James E. & Lee, Junsoo & Rayos-Velazquez, Marco & Karul, Cagin, 2021. "Convergence in OPEC carbon dioxide emissions: Evidence from new panel stationarity tests with factors and breaks," Economic Modelling, Elsevier, vol. 100(C).
    23. de Lucas-Santos, Sonia & Delgado-Rodríguez, María Jesús & Cabezas-Ares, Alfredo, 2021. "Cyclical convergence in per capita carbon dioxide emission in US states: A dynamic unobserved component approach," Energy, Elsevier, vol. 217(C).
    24. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2018. "Conditional convergence in per capita carbon emissions since 1900," Applied Energy, Elsevier, vol. 228(C), pages 916-927.
    25. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 407-437.
    26. Wang, Juan & Hu, Mingming & Tukker, Arnold & Rodrigues, João F.D., 2019. "The impact of regional convergence in energy-intensive industries on China's CO2 emissions and emission goals," Energy Economics, Elsevier, vol. 80(C), pages 512-523.
    27. Presno, María José & Landajo, Manuel & Fernández González, Paula, 2018. "Stochastic convergence in per capita CO2 emissions. An approach from nonlinear stationarity analysis," Energy Economics, Elsevier, vol. 70(C), pages 563-581.
    28. Jonathan Temple, 2006. "Aggregate Production Functions and Growth Economics," International Review of Applied Economics, Taylor & Francis Journals, vol. 20(3), pages 301-317.
    29. Joseph E. Aldy, 2007. "Divergence in State-Level Per Capita Carbon Dioxide Emissions," Land Economics, University of Wisconsin Press, vol. 83(3), pages 353-369.
    30. Ordás Criado, C. & Grether, J.-M., 2011. "Convergence in per capita CO2 emissions: A robust distributional approach," Resource and Energy Economics, Elsevier, vol. 33(3), pages 637-665, September.
    31. Bernard, Andrew B & Durlauf, Steven N, 1995. "Convergence in International Output," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 97-108, April-Jun.
    32. Philippe Aghion & Peter Howitt & David Mayer-Foulkes, 2005. "The Effect of Financial Development on Convergence: Theory and Evidence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 173-222.
    33. Ezcurra, Roberto, 2007. "Is there cross-country convergence in carbon dioxide emissions?," Energy Policy, Elsevier, vol. 35(2), pages 1363-1372, February.
    34. Chhavi Tiwari & Mrutyunjay Mishra, 2017. "Testing the CO2 Emissions Convergence: Evidence from Asian Countries," IIM Kozhikode Society & Management Review, , vol. 6(1), pages 67-72, January.
    35. Parente, Stephen L & Prescott, Edward C, 1994. "Barriers to Technology Adoption and Development," Journal of Political Economy, University of Chicago Press, vol. 102(2), pages 298-321, April.
    36. Nilgun Yavuz & Veli Yilanci, 2013. "Convergence in Per Capita Carbon Dioxide Emissions Among G7 Countries: A TAR Panel Unit Root Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 283-291, February.
    37. Quah, Danny, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," CEPR Discussion Papers 1586, C.E.P.R. Discussion Papers.
    38. Luo, Yusen & Lu, Zhengnan & Long, Xingle, 2020. "Heterogeneous effects of endogenous and foreign innovation on CO2 emissions stochastic convergence across China," Energy Economics, Elsevier, vol. 91(C).
    39. Chien-Chiang Lee & Chun-Ping Chang & Pei-Fen Chen, 2008. "Do CO2 emission levels converge among 21 OECD countries? New evidence from unit root structural break tests," Applied Economics Letters, Taylor & Francis Journals, vol. 15(7), pages 551-556.
    40. Herrerias, M.J., 2012. "CO2 weighted convergence across the EU-25 countries (1920–2007)," Applied Energy, Elsevier, vol. 92(C), pages 9-16.
    41. Joseph Aldy, 2006. "Per Capita Carbon Dioxide Emissions: Convergence or Divergence?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 533-555, April.
    42. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    43. Rios, Vicente & Gianmoena, Lisa, 2018. "Convergence in CO2 emissions: A spatial economic analysis with cross-country interactions," Energy Economics, Elsevier, vol. 75(C), pages 222-238.
    44. Ali Acaravci & Sinan Erdogan, 2016. "The Convergence Behavior of CO2 Emissions in Seven Regions under Multiple Structural Breaks," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 575-580.
    45. Wu, Jianxian & Nie, Xin & Wang, Han & Li, Weijuan, 2023. "Eco-industrial parks and green technological progress: Evidence from Chinese cities," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    46. Wang, Yiming & Zhang, Pei & Huang, Dake & Cai, Changda, 2014. "Convergence behavior of carbon dioxide emissions in China," Economic Modelling, Elsevier, vol. 43(C), pages 75-80.
    47. Marco Barassi & Matthew Cole & Robert Elliott, 2008. "Stochastic Divergence or Convergence of Per Capita Carbon Dioxide Emissions: Re-examining the Evidence," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(1), pages 121-137, May.
    48. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.
    49. Quah, Danny T, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," Journal of Economic Growth, Springer, vol. 2(1), pages 27-59, March.
    50. Quah, Danny T, 1996. "Convergence Empirics across Economies with (Some) Capital Mobility," Journal of Economic Growth, Springer, vol. 1(1), pages 95-124, March.
    51. Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2015. "Convergence of carbon dioxide performance across Swedish industrial sectors: An environmental index approach," Energy Economics, Elsevier, vol. 51(C), pages 227-235.
    52. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    53. Lee, Chien-Chiang & Chang, Chun-Ping, 2008. "New evidence on the convergence of per capita carbon dioxide emissions from panel seemingly unrelated regressions augmented Dickey–Fuller tests," Energy, Elsevier, vol. 33(9), pages 1468-1475.
    54. Roberto Ezcurra, 2007. "The world distribution of carbon dioxide emissions," Applied Economics Letters, Taylor & Francis Journals, vol. 14(5), pages 349-352.
    55. Cialani, Catia & Mortazavi, Reza, 2021. "Sectoral analysis of club convergence in EU countries’ CO2 emissions," Energy, Elsevier, vol. 235(C).
    56. Li, Xiao-Lin & Tang, D.P. & Chang, Tsangyao, 2014. "CO2 emissions converge in the 50 U.S. states — Sequential panel selection method," Economic Modelling, Elsevier, vol. 40(C), pages 320-333.
    57. Rémy Bonnet & Didier Swingedouw & Guillaume Gastineau & Olivier Boucher & Julie Deshayes & Frédéric Hourdin & Juliette Mignot & Jérôme Servonnat & Adriana Sima, 2021. "Increased risk of near term global warming due to a recent AMOC weakening," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Benavides, Domingo & Andrés-Rosales, Roldán & Álvarez-García, José & Bekun, Festus Víctor, 2024. "Convergence of clubs between per capita carbon dioxide emissions from fossil fuels and cement production," Energy Policy, Elsevier, vol. 186(C).
    2. Diego Romero-Ávila & Tolga Omay, 2023. "Convergence of GHGs emissions in the long-run: aerosol precursors, reactive gases and aerosols—a nonlinear panel approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12303-12337, November.
    3. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    4. Nazlioglu, Saban & Payne, James E. & Lee, Junsoo & Rayos-Velazquez, Marco & Karul, Cagin, 2021. "Convergence in OPEC carbon dioxide emissions: Evidence from new panel stationarity tests with factors and breaks," Economic Modelling, Elsevier, vol. 100(C).
    5. Firat Emir & Mehmet Balcilar & Muhammad Shahbaz, 2018. "Inequality in Carbon Intensity in EU-28: Analysis Based on Club Convergence," Working Papers 15-38, Eastern Mediterranean University, Department of Economics.
    6. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    7. Belloc, Ignacio & Molina, José Alberto, 2023. "Are greenhouse gas emissions converging in Latin America? Implications for environmental policies," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 337-356.
    8. Tiwari, Aviral & Nasir, Muhammad Ali & shahbaz, Muhammad & Raheem, Ibrahim, 2020. "Convergence and club convergence of CO2 emissions at state levels: A nonlinear analysis of the USA," MPRA Paper 105355, University Library of Munich, Germany.
    9. Ahmed, Mumtaz & Khan, Atif Maqbool & Bibi, Salma & Zakaria, Muhammad, 2017. "Convergence of per capita CO2 emissions across the globe: Insights via wavelet analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 86-97.
    10. Liu, Chang & Hong, Tao & Li, Huaifeng & Wang, Lili, 2018. "From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China," Energy Policy, Elsevier, vol. 121(C), pages 300-313.
    11. UÄŸur UrsavaÅŸ & Veli Yilanci, 2023. "Convergence analysis of ecological footprint at different time scales: Evidence from Southern Common Market countries," Energy & Environment, , vol. 34(2), pages 429-442, March.
    12. Cai, Yifei & Chang, Tsangyao & Inglesi-Lotz, Roula, 2018. "Asymmetric persistence in convergence for carbon dioxide emissions based on quantile unit root test with Fourier function," Energy, Elsevier, vol. 161(C), pages 470-481.
    13. Rafael Morales-Lage & Aurelia Bengochea-Morancho & Mariam Camarero & Inmaculada Martínez-Zarzoso, 2017. "Stochastic and club convergence of sectoral CO2 emissions in the European Union," Working Papers 2017/01, Economics Department, Universitat Jaume I, Castellón (Spain).
    14. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    15. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
    16. LAWSON, Laté A. & MARTINO, Roberto & NGUYEN-VAN, Phu, 2020. "Environmental convergence and environmental Kuznets curve: A unified empirical framework," Ecological Modelling, Elsevier, vol. 437(C).
    17. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    18. Ivanovski, Kris & Awaworyi Churchill, Sefa, 2020. "Convergence and determinants of greenhouse gas emissions in Australia: A regional analysis," Energy Economics, Elsevier, vol. 92(C).
    19. Edy Yusuf Agung Gunanto & Tri Wahyu & Jaka Aminata & Banatul Hayati, 2021. "Convergence CO2 Emission in ASEAN Countries: Augmented Green Solow Model Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 572-578.
    20. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.

    More about this item

    Keywords

    Per capita CO2; Phillips and Sul club convergence; Transition paths; Indian states;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03443-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.