IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v125y2023ics0140988323003390.html
   My bibliography  Save this article

Toward carbon peaking and neutralization: The heterogeneous stochastic convergence of CO2 emissions and the role of digital inclusive finance

Author

Listed:
  • Xie, Qichang
  • Ma, Di
  • Raza, Muhammad Yousaf
  • Tang, Songlin
  • Bai, Dingchuan

Abstract

This article explores the dynamic distribution of city-level CO2 emissions from China's national and regional perspectives. For this, we apply a q-σ stochastic convergence model to inspect the heterogeneous convergence trend of carbon emissions at different quantiles. A panel time-varying quantile regression model with a factor structure was employed to determine the absolute and conditional q-β stochastic convergence of CO2 emissions and to examine the dynamic influence of digital inclusive finance on the convergence of carbon emissions. The results show (i) CO2 emissions exhibit a spatially imbalanced distribution pattern of being low in east and high in the west. The dynamic progression of carbon emissions in different areas presents huge differences in which Eastern, Central and Western China show insignificant and significant changes of distribution trending in CO2 emissions. (ii) Excluding the central region, country's CO2 emissions in eastern and western regions display dynamic q-σ convergence and dynamic absolute q-β convergence at different quantiles. In contrast, a conditional q-β convergence of CO2 emissions in the whole country and each region is found across 5%–95% quantiles. (iii) At national and regional emissions, the dynamic q-σ convergence, absolute and conditional q-β convergence typically becomes more pronounced at mid-high quantile than at low quantile. (iv) Development of digital inclusive finance across the country and in Central and Western China generally facilitates carbon emissions convergence, but the opposite result for the eastern region. Finally, comprehensive finance growth, digital finance and low-carbon technological efforts can be a better fit for achieving dual-carbon goals.

Suggested Citation

  • Xie, Qichang & Ma, Di & Raza, Muhammad Yousaf & Tang, Songlin & Bai, Dingchuan, 2023. "Toward carbon peaking and neutralization: The heterogeneous stochastic convergence of CO2 emissions and the role of digital inclusive finance," Energy Economics, Elsevier, vol. 125(C).
  • Handle: RePEc:eee:eneeco:v:125:y:2023:i:c:s0140988323003390
    DOI: 10.1016/j.eneco.2023.106841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323003390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.106841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahbaz, Muhammad & Lean, Hooi Hooi, 2012. "Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia," Energy Policy, Elsevier, vol. 40(C), pages 473-479.
    2. Matthew A. Cole & Robert J. R. Elliott & Per G. Fredriksson, 2006. "Endogenous Pollution Havens: Does FDI Influence Environmental Regulations?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 108(1), pages 157-178, March.
    3. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    4. He, Weijun & Wang, Bo & Danish, & Wang, Zhaohua, 2018. "Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data," Energy Economics, Elsevier, vol. 74(C), pages 263-274.
    5. Rios, Vicente & Gianmoena, Lisa, 2018. "Convergence in CO2 emissions: A spatial economic analysis with cross-country interactions," Energy Economics, Elsevier, vol. 75(C), pages 222-238.
    6. Eric LABAYE & Jaana REMES, 2015. "Digital Technologies and the Global Economy's Productivity Imperative," Communications & Strategies, IDATE, Com&Strat dept., vol. 1(100), pages 47-64, 4th quart.
    7. Wang, Yiming & Zhang, Pei & Huang, Dake & Cai, Changda, 2014. "Convergence behavior of carbon dioxide emissions in China," Economic Modelling, Elsevier, vol. 43(C), pages 75-80.
    8. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    9. Mark Strazicich & John List, 2003. "Are CO 2 Emission Levels Converging Among Industrial Countries?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(3), pages 263-271, March.
    10. Manoel Bittencourt, 2010. "Financial development and inequality: Brazil 1985–1994," Economic Change and Restructuring, Springer, vol. 43(2), pages 113-130, May.
    11. Marrero, Ángel S. & Marrero, Gustavo A. & González, Rosa Marina & Rodríguez-López, Jesús, 2021. "Convergence in road transport CO2 emissions in Europe," Energy Economics, Elsevier, vol. 99(C).
    12. Hao, Yu & Liao, Hua & Wei, Yi-Ming, 2015. "Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," Applied Energy, Elsevier, vol. 142(C), pages 229-239.
    13. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    14. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    15. Bimonte, Salvatore, 2009. "Growth and environmental quality: Testing the double convergence hypothesis," Ecological Economics, Elsevier, vol. 68(8-9), pages 2406-2411, June.
    16. Shahbaz, Muhammad & Li, Jiaman & Dong, Xiucheng & Dong, Kangyin, 2022. "How financial inclusion affects the collaborative reduction of pollutant and carbon emissions: The case of China," Energy Economics, Elsevier, vol. 107(C).
    17. Herrerias, M.J., 2012. "CO2 weighted convergence across the EU-25 countries (1920–2007)," Applied Energy, Elsevier, vol. 92(C), pages 9-16.
    18. Jobert, Thomas & Karanfil, Fatih & Tykhonenko, Anna, 2010. "Convergence of per capita carbon dioxide emissions in the EU: Legend or reality?," Energy Economics, Elsevier, vol. 32(6), pages 1364-1373, November.
    19. Shahbaz, Muhammad & Kumar Tiwari, Aviral & Nasir, Muhammad, 2013. "The effects of financial development, economic growth, coal consumption and trade openness on CO2 emissions in South Africa," Energy Policy, Elsevier, vol. 61(C), pages 1452-1459.
    20. Yin, Zhichao & Gong, Xue & Guo, Peiyao & Wu, Tao, 2019. "What Drives Entrepreneurship in Digital Economy? Evidence from China," Economic Modelling, Elsevier, vol. 82(C), pages 66-73.
    21. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
    22. Kim, Dong-Hyeon & Wu, Yi-Chen & Lin, Shu-Chin, 2020. "Carbon dioxide emissions and the finance curse," Energy Economics, Elsevier, vol. 88(C).
    23. Peterson K. Ozili, 2018. "Impact of digital finance on financial inclusion and stability," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 18(4), pages 329-340, December.
    24. Nathan Nunn & Nancy Qian, 2014. "US Food Aid and Civil Conflict," American Economic Review, American Economic Association, vol. 104(6), pages 1630-1666, June.
    25. Li, Xuehui & Lin, Boqiang, 2013. "Global convergence in per capita CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 357-363.
    26. Hübler, Michael, 2017. "The inequality-emissions nexus in the context of trade and development: A quantile regression approach," Ecological Economics, Elsevier, vol. 134(C), pages 174-185.
    27. Amy K. Richmond & Robert K. Kaufmann, 2006. "Energy Prices and Turning Points: The Relationship between Income and Energy Use/Carbon Emissions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 157-180.
    28. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    29. Dang, Jianwei & Motohashi, Kazuyuki, 2015. "Patent statistics: A good indicator for innovation in China? Patent subsidy program impacts on patent quality," China Economic Review, Elsevier, vol. 35(C), pages 137-155.
    30. Lin, Boqiang & Ma, Ruiyang, 2022. "Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    31. Luo, Yusen & Lu, Zhengnan & Long, Xingle, 2020. "Heterogeneous effects of endogenous and foreign innovation on CO2 emissions stochastic convergence across China," Energy Economics, Elsevier, vol. 91(C).
    32. Erwin Bulte & John A. List & Mark C. Strazicich, 2007. "Regulatory Federalism And The Distribution Of Air Pollutant Emissions," Journal of Regional Science, Wiley Blackwell, vol. 47(1), pages 155-178, February.
    33. Kahouli, Bassem, 2018. "The causality link between energy electricity consumption, CO2 emissions, R&D stocks and economic growth in Mediterranean countries (MCs)," Energy, Elsevier, vol. 145(C), pages 388-399.
    34. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    35. Wang, Juan & Zhang, Kezhong, 2014. "Convergence of carbon dioxide emissions in different sectors in China," Energy, Elsevier, vol. 65(C), pages 605-611.
    36. Stephen C Peck & Thomas J. Teisberg, 1992. "CETA: A Model for Carbon Emissions Trajectory Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 55-78.
    37. Ozili, Peterson Kitakogelu, 2018. "Impact of Digital Finance on Financial Inclusion and Stability," MPRA Paper 84771, University Library of Munich, Germany.
    38. Kenneth Merkley & Roni Michaely & Joseph Pacelli, 2017. "Does the Scope of the Sell-Side Analyst Industry Matter? An Examination of Bias, Accuracy, and Information Content of Analyst Reports," Journal of Finance, American Finance Association, vol. 72(3), pages 1285-1334, June.
    39. Soytas, Ugur & Sari, Ramazan, 2009. "Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member," Ecological Economics, Elsevier, vol. 68(6), pages 1667-1675, April.
    40. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    41. Liu, Yang & Luan, Lin & Wu, Weilong & Zhang, Zhiqiang & Hsu, Yen, 2021. "Can digital financial inclusion promote China's economic growth?," International Review of Financial Analysis, Elsevier, vol. 78(C).
    42. Paul Evans & Ji Uk Kim, 2016. "Convergence analysis as spatial dynamic panel regression and distribution dynamics of $$\hbox {CO}_{2}$$ CO 2 emissions in Asian countries," Empirical Economics, Springer, vol. 50(3), pages 729-751, May.
    43. Tomohiro Ando & Jushan Bai, 2020. "Quantile Co-Movement in Financial Markets: A Panel Quantile Model With Unobserved Heterogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 266-279, January.
    44. Yang, Tong & Zhang, Xun, 2022. "FinTech adoption and financial inclusion: Evidence from household consumption in China," Journal of Banking & Finance, Elsevier, vol. 145(C).
    45. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    46. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    47. Shen, Neng & Peng, Hui & Wang, Qunwei, 2021. "Spatial dependence, agglomeration externalities and the convergence of carbon productivity," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    48. Lin, Boqiang & Xu, Bin, 2020. "Effective ways to reduce CO2 emissions from China's heavy industry? Evidence from semiparametric regression models," Energy Economics, Elsevier, vol. 92(C).
    49. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2020. "Stochastic convergence in per capita CO2 emissions: Evidence from emerging economies, 1921–2014," Energy Economics, Elsevier, vol. 86(C).
    50. Feng, Suling & Zhang, Rong & Li, Guoxiang, 2022. "Environmental decentralization, digital finance and green technology innovation," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 70-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guori Huang & Zheng Chen & Nan Shang & Xiaoyue Hu & Chen Wang & Huan Wen & Zhiliang Liu, 2024. "Do Tradable Green Certificates Promote Regional Carbon Emissions Reduction for Sustainable Development? Evidence from China," Sustainability, MDPI, vol. 16(17), pages 1-20, August.
    2. Wang, Zongrun & Cao, Xuxin & Ren, Xiaohang & Gozgor, Giray, 2024. "Digital finance and the energy transition: Evidence from Chinese prefecture-level cities," Global Finance Journal, Elsevier, vol. 61(C).
    3. Xie, Qichang & Wang, Dong & Bai, Qianwen, 2024. "“Cooperation” or “competition”: Digital finance enables green technology innovation—a new assessment from dynamic spatial spillover perspectives," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 587-601.
    4. Qi He & Hongli Jiang, 2024. "Digital Inclusive Finance, Digital Technology Innovation, and Carbon Emission Intensity," Sustainability, MDPI, vol. 16(15), pages 1-26, July.
    5. Xi Chen & Xuan Huang & Tonghui Yu & Yu Zhang & Xufeng Cui, 2024. "From Imbalance to Synergy: The Coupling Coordination of Digital Inclusive Finance and Urban Ecological Resilience in the Yangtze River Economic Belt," Land, MDPI, vol. 13(10), pages 1-33, October.
    6. Zhang, Dongyang & Bai, Dingchuan & Wang, Cao & He, Yurun, 2024. "Distribution dynamics and quantile dynamic convergence of the digital economy: Prefecture-level evidence in China," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    7. Qiong Shen & Rui Wu & Yuxi Pan & Yanchao Feng, 2024. "Explaining and modeling the impacts of inclusive finance on CO2 emissions in China integrated the intermediary role of energy poverty," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    8. Li, Nan & Zhou, Yifan, 2024. "Can digital financial development promote corporate green technology innovation?," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1562-1582.
    9. Honghe Li & Xiaotian Du & Xiang-Wu Yan & Ning Xu, 2024. "Digital Transformation and Urban Green Development: Evidence from China’s Data Factor Marketization," Sustainability, MDPI, vol. 16(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Benavides, Domingo & Andrés-Rosales, Roldán & Álvarez-García, José & Bekun, Festus Víctor, 2024. "Convergence of clubs between per capita carbon dioxide emissions from fossil fuels and cement production," Energy Policy, Elsevier, vol. 186(C).
    2. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    3. Vaseem Akram & Badri Narayan Rath & Pradipta Kumar Sahoo, 2024. "Club convergence in per capita carbon dioxide emissions across Indian states," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19907-19934, August.
    4. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.
    5. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    6. Parker, Steven & Bhatti, M. Ishaq, 2020. "Dynamics and drivers of per capita CO2 emissions in Asia," Energy Economics, Elsevier, vol. 89(C).
    7. Nazlioglu, Saban & Payne, James E. & Lee, Junsoo & Rayos-Velazquez, Marco & Karul, Cagin, 2021. "Convergence in OPEC carbon dioxide emissions: Evidence from new panel stationarity tests with factors and breaks," Economic Modelling, Elsevier, vol. 100(C).
    8. LAWSON, Laté A. & MARTINO, Roberto & NGUYEN-VAN, Phu, 2020. "Environmental convergence and environmental Kuznets curve: A unified empirical framework," Ecological Modelling, Elsevier, vol. 437(C).
    9. Liu, Chang & Hong, Tao & Li, Huaifeng & Wang, Lili, 2018. "From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China," Energy Policy, Elsevier, vol. 121(C), pages 300-313.
    10. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    11. Diego Romero-Ávila & Tolga Omay, 2023. "Convergence of GHGs emissions in the long-run: aerosol precursors, reactive gases and aerosols—a nonlinear panel approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12303-12337, November.
    12. Cai, Yifei & Chang, Tsangyao & Inglesi-Lotz, Roula, 2018. "Asymmetric persistence in convergence for carbon dioxide emissions based on quantile unit root test with Fourier function," Energy, Elsevier, vol. 161(C), pages 470-481.
    13. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    14. Zheng, Shenglin & Yuan, Rong, 2023. "Sectoral convergence analysis of China's emissions intensity and its implications," Energy, Elsevier, vol. 262(PB).
    15. Qiang Du & Min Wu & Yadan Xu & Xinran Lu & Libiao Bai & Ming Yu, 2018. "Club convergence and spatial distribution dynamics of carbon intensity in China’s construction industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 519-536, November.
    16. Belloc, Ignacio & Molina, José Alberto, 2023. "Are greenhouse gas emissions converging in Latin America? Implications for environmental policies," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 337-356.
    17. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    18. Borowiec, Justyna & Papież, Monika, 2024. "Convergence of CO2 emissions in countries at different stages of development. Do globalisation and environmental policies matter?," Energy Policy, Elsevier, vol. 184(C).
    19. PU, Zhengning & FEI, Jinhua, 2022. "The impact of digital finance on residential carbon emissions: Evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 515-527.
    20. Shen, Neng & Peng, Hui & Wang, Qunwei, 2021. "Spatial dependence, agglomeration externalities and the convergence of carbon productivity," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).

    More about this item

    Keywords

    Carbon emissions; Digital inclusive finance; Quantile regression; Stochastic convergence; Technological innovation;
    All these keywords.

    JEL classification:

    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:125:y:2023:i:c:s0140988323003390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.