IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v92y2020ics0140988320303145.html
   My bibliography  Save this article

Effective ways to reduce CO2 emissions from China's heavy industry? Evidence from semiparametric regression models

Author

Listed:
  • Lin, Boqiang
  • Xu, Bin

Abstract

Using China's province-level panel data from 2005 to 2017, this article uses a semiparametric regression model to investigate CO2 emissions in China's heavy industry. Empirical results show that while economic growth exerted carbon reduction effects in the eastern region, it stimulated the growth of CO2 emissions in the central and western regions. This is mainly due to regional differences in industrial structure and the high-tech industry. Energy efficiency has made a greater contribution to reducing CO2 emissions in the central region because the R&D investment and patent rights granted in this region has grown faster. The energy consumption structure has a more complex impact. It exerts a “pulling first, then restricting” (Ո-shaped) nonlinear effect on CO2 emissions in the eastern and western regions, but an inverted “N-shaped” effect in the central region. This is mainly due to the differences in the composition of energy consumption across regions. Environmental regulations have a positive “U-shaped” nonlinear impact on CO2 emissions in the eastern and western regions. It means that environmental regulations help cut down CO2 emissions in the early stage, and the facilitation effect gradually disappears at the later stage. Conversely, environmental regulations produce an inverted “U-shaped” impact in the central region.

Suggested Citation

  • Lin, Boqiang & Xu, Bin, 2020. "Effective ways to reduce CO2 emissions from China's heavy industry? Evidence from semiparametric regression models," Energy Economics, Elsevier, vol. 92(C).
  • Handle: RePEc:eee:eneeco:v:92:y:2020:i:c:s0140988320303145
    DOI: 10.1016/j.eneco.2020.104974
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988320303145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2020.104974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Xiaomin & Jiang, Xiaoyun & Zhang, Tingting & Huang, Zhen, 2020. "Study on impact of electricity production on regional water resource in China by water footprint," Renewable Energy, Elsevier, vol. 152(C), pages 165-178.
    2. Qi, Xiaoyan & Guo, Pibin & Guo, Yanshan & Liu, Xiuli & Zhou, Xijun, 2020. "Understanding energy efficiency and its drivers: An empirical analysis of China’s 14 coal intensive industries," Energy, Elsevier, vol. 190(C).
    3. Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
    4. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2019. "Determining China's CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis," Energy Policy, Elsevier, vol. 128(C), pages 752-762.
    5. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
    6. Wagner, Martin & Grabarczyk, Peter & Hong, Seung Hyun, 2020. "Fully modified OLS estimation and inference for seemingly unrelated cointegrating polynomial regressions and the environmental Kuznets curve for carbon dioxide emissions," Journal of Econometrics, Elsevier, vol. 214(1), pages 216-255.
    7. Ouyang, Xiaoling & Fang, Xingming & Cao, Yan & Sun, Chuanwang, 2020. "Factors behind CO2 emission reduction in Chinese heavy industries: Do environmental regulations matter?," Energy Policy, Elsevier, vol. 145(C).
    8. Pinto, Raphael Guimarães D. & Szklo, Alexandre S. & Rathmann, Regis, 2018. "CO2 emissions mitigation strategy in the Brazilian iron and steel sector–From structural to intensity effects," Energy Policy, Elsevier, vol. 114(C), pages 380-393.
    9. Ouyang, Xiaoling & Li, Qiong & Du, Kerui, 2020. "How does environmental regulation promote technological innovations in the industrial sector? Evidence from Chinese provincial panel data," Energy Policy, Elsevier, vol. 139(C).
    10. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    11. Zhao, Xiaoli & Ma, Qian & Yang, Rui, 2013. "Factors influencing CO2 emissions in China's power industry: Co-integration analysis," Energy Policy, Elsevier, vol. 57(C), pages 89-98.
    12. Shahbaz, Muhammad & Raghutla, Chandrashekar & Song, Malin & Zameer, Hashim & Jiao, Zhilun, 2020. "Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China," Energy Economics, Elsevier, vol. 86(C).
    13. Song, Yi & Huang, Jian-Bai & Feng, Chao, 2018. "Decomposition of energy-related CO2 emissions in China's iron and steel industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 59(C), pages 103-116.
    14. Wei, Wei & Mushtaq, Zulqarnain & Sharif, Maimoona & Zeng, Xiaowu & Wan-Li, Zhang & Qaisrani, Mumtaz A., 2020. "Evaluating the coal rebound effect in energy intensive industries of China," Energy, Elsevier, vol. 207(C).
    15. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    16. Wu, Yan & Heerink, Nico & Yu, Linhui, 2020. "Real estate boom and resource misallocation in manufacturing industries: Evidence from China," China Economic Review, Elsevier, vol. 60(C).
    17. Wei, Ting & Chen, Shaoqing, 2020. "Dynamic energy and carbon footprints of urban transportation infrastructures: Differentiating between existing and newly-built assets," Applied Energy, Elsevier, vol. 277(C).
    18. Sun, Chuanwang & Zhang, Wenyue & Luo, Yuan & Xu, Yonghong, 2019. "The improvement and substitution effect of transportation infrastructure on air quality: An empirical evidence from China's rail transit construction," Energy Policy, Elsevier, vol. 129(C), pages 949-957.
    19. Munir, Qaiser & Lean, Hooi Hooi & Smyth, Russell, 2020. "CO2 emissions, energy consumption and economic growth in the ASEAN-5 countries: A cross-sectional dependence approach," Energy Economics, Elsevier, vol. 85(C).
    20. Muhammad, Sulaman & Long, Xingle & Salman, Muhammad & Dauda, Lamini, 2020. "Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries," Energy, Elsevier, vol. 196(C).
    21. Ouyang, Xiaoling & Zhuang, Wuxu & Sun, Chuanwang, 2019. "Haze, health, and income: An integrated model for willingness to pay for haze mitigation in Shanghai, China," Energy Economics, Elsevier, vol. 84(C).
    22. Xu, Bin & Lin, Boqiang, 2020. "Investigating drivers of CO2 emission in China’s heavy industry: A quantile regression analysis," Energy, Elsevier, vol. 206(C).
    23. Hailemariam, Abebe & Smyth, Russell & Zhang, Xibin, 2019. "Oil prices and economic policy uncertainty: Evidence from a nonparametric panel data model," Energy Economics, Elsevier, vol. 83(C), pages 40-51.
    24. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    25. Kou, Mingting & Yang, Yuanqi & Chen, Kaihua, 2020. "The impact of external R&D financing on innovation process from a supply-demand perspective," Economic Modelling, Elsevier, vol. 92(C), pages 375-387.
    26. Taining Wang & Jinjing Tian, 2020. "Recasting the trade impact on labor share: a fixed-effect semiparametric estimation study," Empirical Economics, Springer, vol. 58(5), pages 2465-2511, May.
    27. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    28. Fosten, Jack, 2019. "CO2 emissions and economic activity: A short-to-medium run perspective," Energy Economics, Elsevier, vol. 83(C), pages 415-429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sueyoshi, Toshiyuki & Qu, Jingjing & Li, Aijun & Liu, Xiaohong, 2021. "A new approach for evaluating technology inequality and diffusion barriers: The concept of efficiency Gini coefficient and its application in Chinese provinces," Energy, Elsevier, vol. 235(C).
    2. Wang, Bo & Zhao, Jun & Dong, Kangyin & Jiang, Qingzhe, 2022. "High-quality energy development in China: Comprehensive assessment and its impact on CO2 emissions," Energy Economics, Elsevier, vol. 110(C).
    3. Lee, Chien-Chiang & Ho, Shan-Ju, 2022. "Impacts of export diversification on energy intensity, renewable energy, and waste energy in 121 countries: Do environmental regulations matter?," Renewable Energy, Elsevier, vol. 199(C), pages 1510-1522.
    4. Bamadev Mahapatra & Mohd Irfan, 2024. "Asymmetric adjustments between energy and labour efficiencies in India: new evidence using sectoral panel data analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(4), pages 3921-3948, August.
    5. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    6. Liu, Yang & Dong, Kangyin & Jiang, Qingzhe, 2023. "Assessing energy vulnerability and its impact on carbon emissions: A global case," Energy Economics, Elsevier, vol. 119(C).
    7. Jinfang Sun & Wenkai Li & Kaixiang Zhu & Mengqi Zhang & Haihao Yu & Xiaoyu Wang & Guodong Liu, 2024. "Research on Industrial CO 2 Emission Intensity and Its Driving Mechanism Under China’s Dual Carbon Target," Sustainability, MDPI, vol. 16(23), pages 1-14, December.
    8. Xu, Renjing & Xu, Bin, 2022. "Exploring the effective way of reducing carbon intensity in the heavy industry using a semiparametric econometric approach," Energy, Elsevier, vol. 243(C).
    9. Abdelrahim A. M. Yahia & Ismaeel A. M. Ahmed & Nada R. A. ALhassan, 2021. "How Does the Degree of Export Dependence Affect Chinas Clean Drinking Water?," Asian Journal of Economic Modelling, Asian Economic and Social Society, vol. 9(2), pages 179-198, June.
    10. Liu, Zhen & Diao, Ziyu & Lu, Yuan, 2024. "Can the opening of high-speed rail boost the reduction of air pollution and carbon emissions? Quasi-experimental evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    11. Zhang, Weipan & Wu, Xianhua & Chen, Jihong, 2024. "Low-carbon efficiency analysis of rail-water multimodal transport based on cross efficiency network DEA approach," Energy, Elsevier, vol. 305(C).
    12. Adedayo Johnson Ogungbile & Geoffrey Qiping Shen & Ibrahim Yahaya Wuni & Jin Xue & Jingke Hong, 2021. "A Hybrid Framework for Direct CO 2 Emissions Quantification in China’s Construction Sector," IJERPH, MDPI, vol. 18(22), pages 1-22, November.
    13. Xie, Qichang & Ma, Di & Raza, Muhammad Yousaf & Tang, Songlin & Bai, Dingchuan, 2023. "Toward carbon peaking and neutralization: The heterogeneous stochastic convergence of CO2 emissions and the role of digital inclusive finance," Energy Economics, Elsevier, vol. 125(C).
    14. Wang, Ailun & Hu, Shuo & Li, Jianglong, 2021. "Does economic development help achieve the goals of environmental regulation? Evidence from partially linear functional-coefficient model," Energy Economics, Elsevier, vol. 103(C).
    15. Mohd Irfan & Bamadev Mahapatra & Raj Kumar Ojha, 2023. "Energy Efficiency and Carbon Emissions in Developed and Developing Economies: Investigating the Moderating Role of Financial Development," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(2), pages 437-455, June.
    16. Mahapatra, Bamadev & Irfan, Mohd, 2021. "Asymmetric impacts of energy efficiency on carbon emissions: A comparative analysis between developed and developing economies," Energy, Elsevier, vol. 227(C).
    17. Xu, Bin & Luo, Yuemei & Xu, Renjing & Chen, Jianbao, 2021. "Exploring the driving forces of distributed energy resources in China: Using a semiparametric regression model," Energy, Elsevier, vol. 236(C).
    18. Zhen Liu & Trong Lam Vu & Thi Thu Hien Phan & Thanh Quang Ngo & Nguyen Ho Viet Anh & Ahmad Romadhoni Surya Putra, 2022. "Financial inclusion and green economic performance for energy efficiency finance," Economic Change and Restructuring, Springer, vol. 55(4), pages 2359-2389, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Bin & Lin, Boqiang, 2020. "Investigating drivers of CO2 emission in China’s heavy industry: A quantile regression analysis," Energy, Elsevier, vol. 206(C).
    2. Xu, Bin & Lin, Boqiang, 2021. "Investigating spatial variability of CO2 emissions in heavy industry: Evidence from a geographically weighted regression model," Energy Policy, Elsevier, vol. 149(C).
    3. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    4. Xu, Bin & Chen, Jianbao, 2021. "How to achieve a low-carbon transition in the heavy industry? A nonlinear perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Xu, Renjing & Xu, Bin, 2022. "Exploring the effective way of reducing carbon intensity in the heavy industry using a semiparametric econometric approach," Energy, Elsevier, vol. 243(C).
    6. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    7. Dong Jichang & He Jing & Li Xiuting & Mou Xindi & Dong Zhi, 2020. "The Effect of Industrial Structure Change on Carbon Dioxide Emissions: A Cross-Country Panel Analysis," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 1-16, February.
    8. Xiaopeng Guo & Xiaodan Guo & Jiahai Yuan, 2014. "Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China," Sustainability, MDPI, vol. 7(1), pages 1-21, December.
    9. Yu, Zhang & Khan, Syed Abdul Rehman & Ponce, Pablo & Lopes de Sousa Jabbour, Ana Beatriz & Chiappetta Jabbour, Charbel Jose, 2022. "Factors affecting carbon emissions in emerging economies in the context of a green recovery: Implications for sustainable development goals," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    10. Wang, Zhuo & Yen-Ku, Kuo & Li, Zeyun & An, Nguyen Binh & Abdul-Samad, Zulkiflee, 2022. "The transition of renewable energy and ecological sustainability through environmental policy stringency: Estimations from advance panel estimators," Renewable Energy, Elsevier, vol. 188(C), pages 70-80.
    11. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    12. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
    13. Luo, Yusen & Lu, Zhengnan & Long, Xingle, 2020. "Heterogeneous effects of endogenous and foreign innovation on CO2 emissions stochastic convergence across China," Energy Economics, Elsevier, vol. 91(C).
    14. Li, Zhaoling & Dai, Hancheng & Song, Junnian & Sun, Lu & Geng, Yong & Lu, Keyu & Hanaoka, Tatsuya, 2019. "Assessment of the carbon emissions reduction potential of China's iron and steel industry based on a simulation analysis," Energy, Elsevier, vol. 183(C), pages 279-290.
    15. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    16. Ahmad, Munir & Zhu, Xiwei & Wu, Yiyun, 2022. "The criticality of international tourism and technological innovation for carbon neutrality across regional development levels," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    17. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
    18. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
    19. Shan, Yuli & Liu, Zhu & Guan, Dabo, 2016. "CO2 emissions from China’s lime industry," Applied Energy, Elsevier, vol. 166(C), pages 245-252.
    20. Zhang, Zhuo & Zhao, Yongliang & Cai, Haiya & Ajaz, Tahseen, 2023. "Influence of renewable energy infrastructure, Chinese outward FDI, and technical efficiency on ecological sustainability in belt and road node economies," Renewable Energy, Elsevier, vol. 205(C), pages 608-616.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:92:y:2020:i:c:s0140988320303145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.