IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v59y2018icp103-116.html
   My bibliography  Save this article

Decomposition of energy-related CO2 emissions in China's iron and steel industry: A comprehensive decomposition framework

Author

Listed:
  • Song, Yi
  • Huang, Jian-Bai
  • Feng, Chao

Abstract

The rapid growth of CO2 emissions is not only due to increased energy consumption but also to multiple driving factors. Based on data from 2000 to 2014, this study proposes a comprehensive decomposition framework that combines production-theoretical decomposition analysis with index decomposition analysis to identify the driving factors of CO2 emissions from China's iron and steel industry. Furthermore, the different characteristics and drivers of CO2 emissions have been analyzed at the national, regional and provincial levels. The results indicate the following: (1) During 2000–2014, the average annual growth of CO2 emissions from China's iron and steel industry is 11.23%, and economic activity is the main reason for the dramatic increase. (2) Desirable output technology change has the greatest potential to mitigate CO2 emissions, followed by energy usage efficiency and energy saving technology change. Furthermore, the desirable output technology change and energy saving technology change are the constraint factors for CO2 emissions in all provinces. (3) Energy mix change, potential energy intensity change and desirable output technological efficiency generate important effects on the growth of CO2 emissions in most provinces. (4) The effects of energy usage efficiency to mitigate CO2 emissions in eastern region are not as great compared with those in central and western regions, and have mixed result across provinces. Therefore eliminating obsolete production capacities, improving R&D investment, accelerating the application of advanced technologies, reforming the ownership of enterprises and encouraging private and foreign investment represent the primary measures for mitigating the CO2 emissions from China's iron and steel industry.

Suggested Citation

  • Song, Yi & Huang, Jian-Bai & Feng, Chao, 2018. "Decomposition of energy-related CO2 emissions in China's iron and steel industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 59(C), pages 103-116.
  • Handle: RePEc:eee:jrpoli:v:59:y:2018:i:c:p:103-116
    DOI: 10.1016/j.resourpol.2018.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420718301326
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karmellos, M. & Kopidou, D. & Diakoulaki, D., 2016. "A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries," Energy, Elsevier, vol. 94(C), pages 680-692.
    2. Ning Chang & Michael L. Lahr, 2016. "Changes in China’s production-source CO 2 emissions: insights from structural decomposition analysis and linkage analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 224-242, June.
    3. Du, Kerui & Lin, Boqiang, 2015. "Understanding the rapid growth of China's energy consumption: A comprehensive decomposition framework," Energy, Elsevier, vol. 90(P1), pages 570-577.
    4. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    5. Zhang, Xing-Ping & Zhang, Jing & Tan, Qin-Liang, 2013. "Decomposing the change of CO2 emissions: A joint production theoretical approach," Energy Policy, Elsevier, vol. 58(C), pages 329-336.
    6. Qi, Tianyu & Weng, Yuyan & Zhang, Xiliang & He, Jiankun, 2016. "An analysis of the driving factors of energy-related CO2 emission reduction in China from 2005 to 2013," Energy Economics, Elsevier, vol. 60(C), pages 15-22.
    7. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    8. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
    9. Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
    10. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    11. Cai, Wenjia & Wang, Can & Liu, Wenling & Mao, Ziwei & Yu, Huichao & Chen, Jining, 2009. "Sectoral analysis for international technology development and transfer: Cases of coal-fired power generation, cement and aluminium in China," Energy Policy, Elsevier, vol. 37(6), pages 2283-2291, June.
    12. Yuan, Chaoqing & Liu, Sifeng & Xie, Naiming, 2010. "The impact on chinese economic growth and energy consumption of the Global Financial Crisis: An input–output analysis," Energy, Elsevier, vol. 35(4), pages 1805-1812.
    13. Ozawa, Leticia & Sheinbaum, Claudia & Martin, Nathan & Worrell, Ernst & Price, Lynn, 2002. "Energy use and CO2 emissions in Mexico's iron and steel industry," Energy, Elsevier, vol. 27(3), pages 225-239.
    14. Zhang, Xing-Ping & Tan, Ya-Kun & Tan, Qin-Liang & Yuan, Jia-Hai, 2012. "Decomposition of aggregate CO2 emissions within a joint production framework," Energy Economics, Elsevier, vol. 34(4), pages 1088-1097.
    15. Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
    16. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    17. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    18. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    19. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    20. Zhaohua Wang & Wei Liu & Jianhua Yin, 2015. "Driving forces of indirect carbon emissions from household consumption in China: an input–output decomposition analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 257-272, February.
    21. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    22. Lin, Boqiang & Wang, Xiaolei, 2014. "Exploring energy efficiency in China׳s iron and steel industry: A stochastic frontier approach," Energy Policy, Elsevier, vol. 72(C), pages 87-96.
    23. Ang, B.W. & Wang, H., 2015. "Index decomposition analysis with multidimensional and multilevel energy data," Energy Economics, Elsevier, vol. 51(C), pages 67-76.
    24. Xu, Bin & Lin, Boqiang, 2016. "Regional differences in the CO2 emissions of China's iron and steel industry: Regional heterogeneity," Energy Policy, Elsevier, vol. 88(C), pages 422-434.
    25. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    26. Yan, Qingyou & Zhang, Qian & Zou, Xin, 2016. "Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000–2020," Energy, Elsevier, vol. 112(C), pages 788-794.
    27. Zhang, Yue-Jun & Hao, Jun-Fang & Song, Juan, 2016. "The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence from the regional level," Applied Energy, Elsevier, vol. 174(C), pages 213-223.
    28. Song, Zongyun & Niu, Dongxiao & Dai, Shuyu & Xiao, Xinli & Wang, Yuwei, 2017. "Incorporating the influence of China's industrial capacity elimination policies in electricity demand forecasting," Utilities Policy, Elsevier, vol. 47(C), pages 1-11.
    29. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    30. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    31. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
    32. Robert E. Hall & Charles I. Jones, 1999. "Why do Some Countries Produce So Much More Output Per Worker than Others?," The Quarterly Journal of Economics, Oxford University Press, vol. 114(1), pages 83-116.
    33. Li, Man, 2010. "Decomposing the change of CO2 emissions in China: A distance function approach," Ecological Economics, Elsevier, vol. 70(1), pages 77-85, November.
    34. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    35. Kim, Kyunam & Kim, Yeonbae, 2012. "International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition," Energy Economics, Elsevier, vol. 34(5), pages 1724-1741.
    36. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    37. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    38. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    39. Yu, Shiwei & Wei, Yi-Ming & Fan, Jingli & Zhang, Xian & Wang, Ke, 2012. "Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization," Applied Energy, Elsevier, vol. 92(C), pages 552-562.
    40. Tang, Chengcai & Zhong, Linsheng & Ng, Pin, 2017. "Factors that Influence the Tourism Industry's Carbon Emissions: a Tourism Area Life Cycle Model Perspective," Energy Policy, Elsevier, vol. 109(C), pages 704-718.
    41. Dequn Zhou & Xiao Liu & Peng Zhou & Qunwei Wang, 2017. "Decomposition Analysis of Aggregate Energy Consumption in China: An Exploration Using a New Generalized PDA Method," Sustainability, MDPI, Open Access Journal, vol. 9(5), pages 1-13, April.
    42. Kerui Du & Boqiang Lin & Chunping Xie, 2017. "Exploring Change in China’s Carbon Intensity: A Decomposition Approach," Sustainability, MDPI, Open Access Journal, vol. 9(2), pages 1-14, February.
    43. Geng, Yong & Zhao, Hongyan & Liu, Zhu & Xue, Bing & Fujita, Tsuyoshi & Xi, Fengming, 2013. "Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning," Energy Policy, Elsevier, vol. 60(C), pages 820-826.
    44. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.
    45. Wang, Yafei & Zhao, Hongyan & Li, Liying & Liu, Zhu & Liang, Sai, 2013. "Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis," Energy Policy, Elsevier, vol. 58(C), pages 312-318.
    46. He, Kun & Wang, Li, 2017. "A review of energy use and energy-efficient technologies for the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1022-1039.
    47. Xiaoling Wang & Feng He & Linfeng Zhang & Lili Chen, 2018. "Energy Efficiency of China’s Iron and Steel Industry from the Perspective of Technology Heterogeneity," Energies, MDPI, Open Access Journal, vol. 11(5), pages 1-11, May.
    48. Yao, Xin & Zhou, Hongchen & Zhang, Aizhen & Li, Aijun, 2015. "Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis," Energy Policy, Elsevier, vol. 84(C), pages 142-154.
    49. Kim, Yeonbae & Worrell, Ernst, 2002. "International comparison of CO2 emission trends in the iron and steel industry," Energy Policy, Elsevier, vol. 30(10), pages 827-838, August.
    50. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    51. Wang, Xiaolei & Lin, Boqiang, 2016. "How to reduce CO2 emissions in China׳s iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1496-1505.
    52. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
    53. He, Feng & Zhang, Qingzhi & Lei, Jiasu & Fu, Weihui & Xu, Xiaoning, 2013. "Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs," Energy Policy, Elsevier, vol. 54(C), pages 204-213.
    54. Feng, Chao & Wang, Miao & Liu, Guan-Chun & Huang, Jian-Bai, 2017. "Sources of economic growth in China from 2000–2013 and its further sustainable growth path: A three-hierarchy meta-frontier data envelopment analysis," Economic Modelling, Elsevier, vol. 64(C), pages 334-348.
    55. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    56. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    57. Md Shahiduzzaman & Allan Layton & Khorshed Alam, 2015. "Decomposition of energy-related CO2 emissions in Australia: Challenges and policy implications," Economic Analysis and Policy, Elsevier, vol. 45(c), pages 100-111.
    58. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
    59. Zhang, Ming & Mu, Hailin & Ning, Yadong & Song, Yongchen, 2009. "Decomposition of energy-related CO2 emission over 1991-2006 in China," Ecological Economics, Elsevier, vol. 68(7), pages 2122-2128, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    2. Mohammed Atris, Amani, 2020. "Assessment of oil refinery performance: Application of data envelopment analysis-discriminant analysis," Resources Policy, Elsevier, vol. 65(C).
    3. Xie, Xuan & Lin, Boqiang, 2019. "Understanding the energy intensity change in China's food industry: A comprehensive decomposition method," Energy Policy, Elsevier, vol. 129(C), pages 53-68.
    4. Song, Yi & Huang, Jianbai & Zhang, Yijun & Wang, Zhiping, 2019. "Drivers of metal consumption in China: An input-output structural decomposition analysis," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    5. Liu, Bingquan & Shi, Junxue & Wang, Hui & Su, Xuelin & Zhou, Peng, 2019. "Driving factors of carbon emissions in China: A joint decomposition approach based on meta-frontier," Applied Energy, Elsevier, vol. 256(C).
    6. Zhang, Yijun & Song, Yi, 2020. "Unified efficiency of coal mining enterprises in China: An analysis based on meta-frontier non-radial directional distance functions," Resources Policy, Elsevier, vol. 65(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:59:y:2018:i:c:p:103-116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.