IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v72y2017icp325-337.html
   My bibliography  Save this article

Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach

Author

Listed:
  • Xu, Bin
  • Lin, Boqiang

Abstract

The greenhouse effect caused by CO2 emissions leads to global warming, glacial melting, sea–level rise and frequent outbreaks of extreme weather, which seriously threatens the safety of human life. China is currently the biggest emitter of carbon dioxide in the world, and the iron and steel industry is the largest contributor to China's CO2 emissions. Therefore, investigating the main driving forces of the growth in CO2 emissions in the iron and steel industry is very necessary and urgent. Interestingly, ignoring the nonlinear relationships between economic variables, most of the existing studies use linear methods to examine the industry's CO2 emissions. Based on 30 provincial panel data from 2000 to 2013, this study uses the nonparametric additive regression model to examine the key driving forces of CO2 emissions in China's iron and steel industry. The estimation results show that the nonlinear effect of economic growth on CO2 emissions is consistent with the Environmental Kuznets Curve (EKC) hypothesis. Energy efficiency improvement follows an inverted “U–shaped” pattern in relation to CO2 emissions because of the difference in R&D funding and R&D personnel investments at different times. An inverted “U–shaped” effect of energy structure is due to the optimization of energy consumption. However, the impact of urbanization exhibits a positive “U–shaped” pattern since fixed asset investment and private car population are much larger at the later stage. Hence, the differential nonlinear effects of these driving forces at different times should be taken into consideration, when discussing reduction of CO2 emissions in China's iron and steel industry.

Suggested Citation

  • Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.
  • Handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:325-337
    DOI: 10.1016/j.rser.2017.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117300126
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niu, Shuwen & Liu, Yiyue & Ding, Yongxia & Qu, Wei, 2016. "China׳s energy systems transformation and emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 782-795.
    2. repec:gam:jecnmx:v:4:y:2016:i:2:p:24:d:68757 is not listed on IDEAS
    3. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    4. Xu, Bin & Lin, Boqiang, 2016. "Reducing CO2 emissions in China's manufacturing industry: Evidence from nonparametric additive regression models," Energy, Elsevier, vol. 101(C), pages 161-173.
    5. Ozawa, Leticia & Sheinbaum, Claudia & Martin, Nathan & Worrell, Ernst & Price, Lynn, 2002. "Energy use and CO2 emissions in Mexico's iron and steel industry," Energy, Elsevier, vol. 27(3), pages 225-239.
    6. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-27, April.
    7. Granger, C. W. J., 1988. "Some recent development in a concept of causality," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 199-211.
    8. Li Li & Yalin Lei & Dongyang Pan, 2016. "Study of CO 2 emissions in China’s iron and steel industry based on economic input–output life cycle assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 957-970, March.
    9. Schumacher, Katja & Sands, Ronald D., 2007. "Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany," Energy Economics, Elsevier, vol. 29(4), pages 799-825, July.
    10. Brunke, Jean-Christian & Blesl, Markus, 2014. "A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry," Energy Policy, Elsevier, vol. 67(C), pages 431-446.
    11. Xu, Bin & Lin, Boqiang, 2016. "Regional differences in the CO2 emissions of China's iron and steel industry: Regional heterogeneity," Energy Policy, Elsevier, vol. 88(C), pages 422-434.
    12. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    13. Mousa, Elsayed & Wang, Chuan & Riesbeck, Johan & Larsson, Mikael, 2016. "Biomass applications in iron and steel industry: An overview of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1247-1266.
    14. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
    15. de Oliveira Junior, Valter B. & Pena, João G. Coelho & Salles, José L. Félix, 2016. "An improved plant-wide multiperiod optimization model of a byproduct gas supply system in the iron and steel-making process," Applied Energy, Elsevier, vol. 164(C), pages 462-474.
    16. Guo, Xiaopeng & Guo, Xiaodan, 2016. "Nuclear power development in China after the restart of new nuclear construction and approval: A system dynamics analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 999-1007.
    17. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    18. Tian, Sicong & Li, Kaimin & Jiang, Jianguo & Chen, Xuejing & Yan, Feng, 2016. "CO2 abatement from the iron and steel industry using a combined Ca–Fe chemical loop," Applied Energy, Elsevier, vol. 170(C), pages 345-352.
    19. Lin, Boqiang & Zhao, Hongli, 2016. "Technological progress and energy rebound effect in China׳s textile industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 173-181.
    20. Lin, Boqiang & Omoju, Oluwasola E. & Okonkwo, Jennifer U., 2016. "Factors influencing renewable electricity consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 687-696.
    21. Liu, Lan-Cui & Fan, Ying & Wu, Gang & Wei, Yi-Ming, 2007. "Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis," Energy Policy, Elsevier, vol. 35(11), pages 5892-5900, November.
    22. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    23. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    24. Karali, Nihan & Xu, Tengfang & Sathaye, Jayant, 2014. "Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 120(C), pages 133-146.
    25. Xu, Bin & Lin, Boqiang, 2016. "A quantile regression analysis of China's provincial CO2 emissions: Where does the difference lie?," Energy Policy, Elsevier, vol. 98(C), pages 328-342.
    26. Zhou, Kaile & Yang, Shanlin, 2016. "Emission reduction of China׳s steel industry: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 319-327.
    27. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
    28. Wang, Xiaolei & Lin, Boqiang, 2016. "How to reduce CO2 emissions in China׳s iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1496-1505.
    29. Achour, Houda & Belloumi, Mounir, 2016. "Investigating the causal relationship between transport infrastructure, transport energy consumption and economic growth in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 988-998.
    30. Lin, Boqiang & Long, Houyin, 2016. "Emissions reduction in China׳s chemical industry – Based on LMDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1348-1355.
    31. Tao Wang & Daniel B. Müller & Seiji Hashimoto, 2015. "The Ferrous Find: Counting Iron and Steel Stocks in China's Economy," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 877-889, October.
    32. Moreno, Blanca & Pereira da Silva, Patrícia, 2016. "How do Spanish polluting sectors' stock market returns react to European Union allowances prices? A panel data approach," Energy, Elsevier, vol. 103(C), pages 240-250.
    33. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Lirong & Huang, Guohe & Baetz, Brian & Zhang, Kaiqiang, 2018. "Environmentally-extended input-output simulation for analyzing production-based and consumption-based industrial greenhouse gas mitigation policies," Applied Energy, Elsevier, vol. 232(C), pages 69-78.
    2. Lin, Boqiang & Xu, Bin, 2018. "How to promote the growth of new energy industry at different stages?," Energy Policy, Elsevier, vol. 118(C), pages 390-403.
    3. Lin, Boqiang & Xu, Bin, 2018. "Factors affecting CO2 emissions in China's agriculture sector: A quantile regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 15-27.
    4. Wang, Xianzhu & Huang, He & Hong, Jingke & Ni, Danfei & He, Rongxiao, 2020. "A spatiotemporal investigation of energy-driven factors in China: A region-based structural decomposition analysis," Energy, Elsevier, vol. 207(C).
    5. Xu, Bin & Lin, Boqiang, 2019. "Can expanding natural gas consumption reduce China's CO2 emissions?," Energy Economics, Elsevier, vol. 81(C), pages 393-407.
    6. Song, Yi & Huang, Jian-Bai & Feng, Chao, 2018. "Decomposition of energy-related CO2 emissions in China's iron and steel industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 59(C), pages 103-116.
    7. Khan, Ali Nawaz & En, Xie & Raza, Muhammad Yousaf & Khan, Naseer Abbas & Ali, Ahsan, 2020. "Sectorial study of technological progress and CO2 emission: Insights from a developing economy," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    8. Wu, Ya & Su, JingRong & Li, Ke & Sun, Chuanwang, 2019. "Comparative study on power efficiency of China's provincial steel industry and its influencing factors," Energy, Elsevier, vol. 175(C), pages 1009-1020.
    9. Lin, Boqiang & Xu, Bin, 2018. "Growth of industrial CO2 emissions in Shanghai city: Evidence from a dynamic vector autoregression analysis," Energy, Elsevier, vol. 151(C), pages 167-177.
    10. Xu, Bin & Lin, Boqiang, 2018. "Assessing the development of China's new energy industry," Energy Economics, Elsevier, vol. 70(C), pages 116-131.
    11. Wang, Zhaohua & Huang, Wanjing & Chen, Zhongfei, 2019. "The peak of CO2 emissions in China: A new approach using survival models," Energy Economics, Elsevier, vol. 81(C), pages 1099-1108.
    12. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
    2. Wu, Ya & Su, JingRong & Li, Ke & Sun, Chuanwang, 2019. "Comparative study on power efficiency of China's provincial steel industry and its influencing factors," Energy, Elsevier, vol. 175(C), pages 1009-1020.
    3. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    4. Xu, Bin & Lin, Boqiang, 2016. "Regional differences in the CO2 emissions of China's iron and steel industry: Regional heterogeneity," Energy Policy, Elsevier, vol. 88(C), pages 422-434.
    5. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
    6. Li, Zhaoling & Dai, Hancheng & Song, Junnian & Sun, Lu & Geng, Yong & Lu, Keyu & Hanaoka, Tatsuya, 2019. "Assessment of the carbon emissions reduction potential of China's iron and steel industry based on a simulation analysis," Energy, Elsevier, vol. 183(C), pages 279-290.
    7. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    8. Song, Yi & Huang, Jian-Bai & Feng, Chao, 2018. "Decomposition of energy-related CO2 emissions in China's iron and steel industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 59(C), pages 103-116.
    9. Xu, Bin & Lin, Boqiang, 2016. "A quantile regression analysis of China's provincial CO2 emissions: Where does the difference lie?," Energy Policy, Elsevier, vol. 98(C), pages 328-342.
    10. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
    11. Wang, Shaojian & Wang, Jieyu & Zhou, Yuquan, 2018. "Estimating the effects of socioeconomic structure on CO2 emissions in China using an econometric analysis framework," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 18-27.
    12. Rafiq, Shuddhasattwa & Nielsen, Ingrid & Smyth, Russell, 2017. "Effect of internal migration on the environment in China," Energy Economics, Elsevier, vol. 64(C), pages 31-44.
    13. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    14. He, Kun & Wang, Li, 2017. "A review of energy use and energy-efficient technologies for the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1022-1039.
    15. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    16. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    17. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    18. Xu, Bin & Lin, Boqiang, 2017. "Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model," Energy Policy, Elsevier, vol. 104(C), pages 404-414.
    19. Bhadbhade, Navdeep & Zuberi, M. Jibran S. & Patel, Martin K., 2019. "A bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials for the swiss metals sector," Energy, Elsevier, vol. 181(C), pages 173-186.
    20. Lin, Boqiang & Xu, Bin, 2018. "Factors affecting CO2 emissions in China's agriculture sector: A quantile regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 15-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:325-337. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.