IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v114y2018icp380-393.html
   My bibliography  Save this article

CO2 emissions mitigation strategy in the Brazilian iron and steel sector–From structural to intensity effects

Author

Listed:
  • Pinto, Raphael Guimarães D.
  • Szklo, Alexandre S.
  • Rathmann, Regis

Abstract

This study estimates the potential and costs for mitigating CO2 emission in Brazil´s steelmaking industry. Two main scenarios were developed: (1) a reference scenario considering the actual trends of the steel industry; and (2) a scenario where the use of charcoal from planted forests is stimulated for the additional steelmaking capacity. In addition, the effects of 13 Best Available Technologies (BAT) and one disruptive technology (TGRBF) on the industrial sector were calculated for both scenarios. Findings show that the increase in charcoal usage in pig iron production from 23.0% to 32.5% can reduce the total CO2 emissions in 11.3% in 2050, while the adoption of the BAT and TGRBF in new steel plants can reduce the CO2 emission levels in 15.6%. If both effects are considered, the CO2 reduction potential would reach 23.2% in 2050. As the TGRBF technology was developed to a coke based-route, a simply structural change towards charcoal (without using BATs) can be less effective in reducing cumulative CO2 emissions than applying BATs in a scenario without structural change. However, in terms of costs, the switch towards an increasing use of charcoal is less expensive. Correct incentives are needed in the industry to achieve such reduction levels.

Suggested Citation

  • Pinto, Raphael Guimarães D. & Szklo, Alexandre S. & Rathmann, Regis, 2018. "CO2 emissions mitigation strategy in the Brazilian iron and steel sector–From structural to intensity effects," Energy Policy, Elsevier, vol. 114(C), pages 380-393.
  • Handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:380-393
    DOI: 10.1016/j.enpol.2017.11.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517307875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.11.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gielen, Dolf & Moriguchi, Yuichi, 2002. "CO2 in the iron and steel industry: an analysis of Japanese emission reduction potentials," Energy Policy, Elsevier, vol. 30(10), pages 849-863, August.
    2. Porzio, Giacomo Filippo & Fornai, Barbara & Amato, Alessandro & Matarese, Nicola & Vannucci, Marco & Chiappelli, Lisa & Colla, Valentina, 2013. "Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry," Applied Energy, Elsevier, vol. 112(C), pages 818-833.
    3. Borba, Bruno S.M.C. & Lucena, André F.P. & Rathmann, Régis & Costa, Isabella V.L. & Nogueira, Larissa P.P. & Rochedo, Pedro R.R. & Castelo Branco, David A. & Júnior, Mauricio F.H. & Szklo, Alexandre &, 2012. "Energy-related climate change mitigation in Brazil: Potential, abatement costs and associated policies," Energy Policy, Elsevier, vol. 49(C), pages 430-441.
    4. Mousa, Elsayed & Wang, Chuan & Riesbeck, Johan & Larsson, Mikael, 2016. "Biomass applications in iron and steel industry: An overview of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1247-1266.
    5. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    6. Worrell, Ernst & Martin, Nathan & Price, Lynn, 2000. "Potentials for energy efficiency improvement in the US cement industry," Energy, Elsevier, vol. 25(12), pages 1189-1214.
    7. Henriques Jr., Mauricio F. & Dantas, Fabrício & Schaeffer, Roberto, 2010. "Potential for reduction of CO2 emissions and a low-carbon scenario for the Brazilian industrial sector," Energy Policy, Elsevier, vol. 38(4), pages 1946-1961, April.
    8. Worrell, Ernst & Price, Lynn & Martin, Nathan, 2001. "Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector," Energy, Elsevier, vol. 26(5), pages 513-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    2. Anna Biniek-Poskart & Marcin Sajdak & Magdalena Skrzyniarz & Jakub Rzącki & Andrzej Skibiński & Monika Zajemska, 2023. "The Application of Lignocellulosic Biomass Waste in the Iron and Steel Industry in the Context of Challenges Related to the Energy Crisis," Energies, MDPI, vol. 16(18), pages 1-25, September.
    3. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Xu, Bin & Lin, Boqiang, 2020. "Investigating drivers of CO2 emission in China’s heavy industry: A quantile regression analysis," Energy, Elsevier, vol. 206(C).
    5. Asadi, Mehrad & Tiwari, Aviral Kumar & Gholami, Samad & Ghasemi, Hamid Reza & Roubaud, David, 2023. "Understanding interconnections among steel, coal, iron ore, and financial assets in the US and China using an advanced methodology," International Review of Financial Analysis, Elsevier, vol. 89(C).
    6. Massuque, Jonas & Roque Lima, Michael Douglas & Müller da Silva, Paulo Henrique & de Paula Protásio, Thiago & Trugilho, Paulo Fernando, 2023. "Potential of charcoal from non-commercial Corymbia and Eucalyptus wood for use in the steel industry," Renewable Energy, Elsevier, vol. 211(C), pages 179-187.
    7. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    8. Grottera, Carolina & Naspolini, Giovanna Ferrazzo & La Rovere, Emilio Lèbre & Schmitz Gonçalves, Daniel Neves & Nogueira, Tainan de Farias & Hebeda, Otto & Dubeux, Carolina Burle Schmidt & Goes, Georg, 2022. "Energy policy implications of carbon pricing scenarios for the Brazilian NDC implementation," Energy Policy, Elsevier, vol. 160(C).
    9. Xu, Bin & Chen, Jianbao, 2021. "How to achieve a low-carbon transition in the heavy industry? A nonlinear perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    10. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2023. "The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    11. Luan Santos & Rafael Garaffa & André F. P. Lucena & Alexandre Szklo, 2018. "Impacts of Carbon Pricing on Brazilian Industry: Domestic Vulnerability and International Trade Exposure," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    12. Lin, Boqiang & Xu, Bin, 2020. "Effective ways to reduce CO2 emissions from China's heavy industry? Evidence from semiparametric regression models," Energy Economics, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    2. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    3. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    4. Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.
    5. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    7. Iftikhar Ahmad & Muhammad Salman Arif & Izzat Iqbal Cheema & Patrik Thollander & Masroor Ahmed Khan, 2020. "Drivers and Barriers for Efficient Energy Management Practices in Energy-Intensive Industries: A Case-Study of Iron and Steel Sector," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    8. Wang, Xiaolei & Lin, Boqiang, 2016. "How to reduce CO2 emissions in China׳s iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1496-1505.
    9. Hidalgo, Ignacio & Szabo, Laszlo & Carlos Ciscar, Juan & Soria, Antonio, 2005. "Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model," Energy, Elsevier, vol. 30(5), pages 583-610.
    10. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    11. Manfred Lenzen & Roberto Schaeffer & Jonas Karstensen & Glen Peters, 2013. "Drivers of change in Brazil’s carbon dioxide emissions," Climatic Change, Springer, vol. 121(4), pages 815-824, December.
    12. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    13. Bhadbhade, Navdeep & Zuberi, M. Jibran S. & Patel, Martin K., 2019. "A bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials for the swiss metals sector," Energy, Elsevier, vol. 181(C), pages 173-186.
    14. Schumacher, Katja & Sands, Ronald D., 2007. "Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany," Energy Economics, Elsevier, vol. 29(4), pages 799-825, July.
    15. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    16. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
    18. Lin, Boqiang & Moubarak, Mohamed, 2014. "Mitigation potential of carbon dioxide emissions in the Chinese textile industry," Applied Energy, Elsevier, vol. 113(C), pages 781-787.
    19. Lin-Ju Chen & Zhen-Hai Fang & Fei Xie & Hai-Kuo Dong & Yu-Heng Zhou, 2020. "Technology-side carbon abatement cost curves for China’s power generation sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1305-1323, October.
    20. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.

    More about this item

    Keywords

    CO2; Steelmaking; Brazil; Charcoal; MACC;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:380-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.