IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v104y2017icp23-32.html
   My bibliography  Save this article

Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties

Author

Listed:
  • Chen, Hao
  • Kang, Jia-Ning
  • Liao, Hua
  • Tang, Bao-Jun
  • Wei, Yi-Ming

Abstract

Energy conservation technologies in the coal-fired power sector are important solutions for the environmental pollution and climate change issues. However, a unified framework for estimating their costs and potentials is still needed due to the wide technology choices, especially considering their economic feasibility under fuel and carbon price uncertainties. Therefore, this study has employed a bottom-up approach to analyze the costs and potentials of 32 key technologies’ new promotions during the 13th Five-Year Plan period (2016–2020), which combines the conservation supply curve (CSC) approach and break-even analysis. Findings show that (1) these 32 technologies have a total coal conservation potential of 275.77 Mt with a cost of 238.82 billion yuan, and their break-even coal price is 866 yuan/ton. (2) steam-water circulation system has the largest energy conservation potential in the coal-fired power industry. (3) considering the co-benefits will facilitate these technologies’ promotions, because their break-even coal prices will decrease by 2.35 yuan/ton when the carbon prices increase by 1 yuan/ton. (4) discount rates have the largest impacts on the technologies’ cost-effectiveness, while the future generation level affect their energy conservation potentials most.

Suggested Citation

  • Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
  • Handle: RePEc:eee:enepol:v:104:y:2017:i:c:p:23-32
    DOI: 10.1016/j.enpol.2017.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517300332
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Worrell, Ernst & Martin, Nathan & Price, Lynn, 2000. "Potentials for energy efficiency improvement in the US cement industry," Energy, Elsevier, vol. 25(12), pages 1189-1214.
    2. Chen, Hao & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1333-1345.
    3. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    4. Bai, Hsunling & Wei, Jong-Hourm, 1996. "The CO2 mitigation options for the electric sector. A case study of Taiwan," Energy Policy, Elsevier, vol. 24(3), pages 221-228, March.
    5. Yang, Xi & Teng, Fei & Wang, Gehua, 2013. "Incorporating environmental co-benefits into climate policies: A regional study of the cement industry in China," Applied Energy, Elsevier, vol. 112(C), pages 1446-1453.
    6. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2015. "Carbon dioxide emission standards for U.S. power plants: An efficiency analysis perspective," Energy Economics, Elsevier, vol. 50(C), pages 140-153.
    7. Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.
    8. Al-Ajlan, S.A. & Al-Ibrahim, A.M. & Abdulkhaleq, M. & Alghamdi, F., 2006. "Developing sustainable energy policies for electrical energy conservation in Saudi Arabia," Energy Policy, Elsevier, vol. 34(13), pages 1556-1565, September.
    9. Zhang, Xian & Wang, Xingwei & Chen, Jiajun & Xie, Xi & Wang, Ke & Wei, Yiming, 2014. "A novel modeling based real option approach for CCS investment evaluation under multiple uncertainties," Applied Energy, Elsevier, vol. 113(C), pages 1059-1067.
    10. Zongguo Wen & Xuan Zhang & Jining Chen & Qilu Tan & Xueying Zhang, 2014. "Forecasting Co2 Mitigation and Policy Options for China's Key Sectors in 2010–2030," Energy & Environment, , vol. 25(3-4), pages 635-659, April.
    11. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    12. Worrell, Ernst & Laitner, John A & Ruth, Michael & Finman, Hodayah, 2003. "Productivity benefits of industrial energy efficiency measures," Energy, Elsevier, vol. 28(11), pages 1081-1098.
    13. Hasanbeigi, Ali & Morrow, William & Masanet, Eric & Sathaye, Jayant & Xu, Tengfang, 2013. "Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China," Energy Policy, Elsevier, vol. 57(C), pages 287-297.
    14. Wei, Yi-Ming & Liu, Lan-Cui & Fan, Ying & Wu, Gang, 2007. "The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China's residents," Energy Policy, Elsevier, vol. 35(1), pages 247-257, January.
    15. Hasanbeigi, Ali & Menke, Christoph & Therdyothin, Apichit, 2010. "The use of conservation supply curves in energy policy and economic analysis: The case study of Thai cement industry," Energy Policy, Elsevier, vol. 38(1), pages 392-405, January.
    16. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    17. Li Li & Jianjun Wang, 2015. "The Effects of Coal Switching and Improvements in Electricity Production Efficiency and Consumption on CO 2 Mitigation Goals in China," Sustainability, MDPI, Open Access Journal, vol. 7(7), pages 1-20, July.
    18. Geng, Jing & Lu, Yonglong & Wang, Tieyu & Giesy, John P. & Chen, Chunli, 2010. "Effects of energy conservation in major energy-intensive industrial sectors on emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in China," Energy Policy, Elsevier, vol. 38(5), pages 2346-2356, May.
    19. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
    20. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    21. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    22. Cheng, Y.S. & Wong, W.K. & Woo, C.K., 2013. "How much have electricity shortages hampered China's GDP growth?," Energy Policy, Elsevier, vol. 55(C), pages 369-373.
    23. Lin, Boqiang & Yang, Lisha, 2013. "The potential estimation and factor analysis of China′s energy conservation on thermal power industry," Energy Policy, Elsevier, vol. 62(C), pages 354-362.
    24. Strickland, Catherine & Sturm, Russell, 1998. "Energy efficiency in World Bank power sector policy and lending New opportunities," Energy Policy, Elsevier, vol. 26(11), pages 873-883, September.
    25. Jiang, Zhujun & Tan, Jijun, 2013. "How the removal of energy subsidy affects general price in China: A study based on input–output model," Energy Policy, Elsevier, vol. 63(C), pages 599-606.
    26. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    27. Hasanbeigi, Ali & Price, Lynn & Lu, Hongyou & Lan, Wang, 2010. "Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants," Energy, Elsevier, vol. 35(8), pages 3461-3473.
    28. Zhao, Xiaofan & Ortolano, Leonard, 2010. "Implementing China's national energy conservation policies at state-owned electric power generation plants," Energy Policy, Elsevier, vol. 38(10), pages 6293-6306, October.
    29. Ibrik, Imad H. & Mahmoud, Marwan M., 2005. "Energy efficiency improvement procedures and audit results of electrical, thermal and solar applications in Palestine," Energy Policy, Elsevier, vol. 33(5), pages 651-658, March.
    30. Chen, Qixin & Kang, Chongqing & Xia, Qing & Guan, Dabo, 2011. "Preliminary exploration on low-carbon technology roadmap of China’s power sector," Energy, Elsevier, vol. 36(3), pages 1500-1512.
    31. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    32. Worrell, Ernst & Price, Lynn & Martin, Nathan, 2001. "Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector," Energy, Elsevier, vol. 26(5), pages 513-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, H. & Chyong CK. & Kang, J-N. & Wei Y-M., 2018. "Economic dispatch in the electricity sector in China: potential benefits and challenges ahead," Cambridge Working Papers in Economics 1836, Faculty of Economics, University of Cambridge.
    2. repec:gam:jeners:v:11:y:2018:i:1:p:241-:d:127853 is not listed on IDEAS
    3. repec:eee:renene:v:138:y:2019:i:c:p:316-325 is not listed on IDEAS
    4. repec:eee:appene:v:212:y:2018:i:c:p:1282-1294 is not listed on IDEAS
    5. repec:eee:appene:v:205:y:2017:i:c:p:769-780 is not listed on IDEAS
    6. repec:eee:energy:v:159:y:2018:i:c:p:1102-1117 is not listed on IDEAS
    7. repec:eee:energy:v:169:y:2019:i:c:p:527-541 is not listed on IDEAS
    8. repec:eee:enepol:v:120:y:2018:i:c:p:365-381 is not listed on IDEAS
    9. repec:eee:renene:v:131:y:2019:i:c:p:700-712 is not listed on IDEAS
    10. repec:eee:eneeco:v:74:y:2018:i:c:p:330-342 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:104:y:2017:i:c:p:23-32. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.