IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i7p9540-9559d52744.html
   My bibliography  Save this article

The Effects of Coal Switching and Improvements in Electricity Production Efficiency and Consumption on CO 2 Mitigation Goals in China

Author

Listed:
  • Li Li

    (School of Economics and Management, Beijing Information Science & Technology University, 100192 Beijing, China)

  • Jianjun Wang

    (School of Economics and Management, North China Electric Power University, 102206 Beijing, China)

Abstract

Although the average CO 2 emission for a person in China is only about 1/4 that of a person in the US, the government of China still made a commitment to ensure that CO 2 emissions will reach their peak in 2030 because of the ever-increasing pressure of global warming. In this work, we examined the effects of coal switching, efficiency improvements in thermal power generation and the electricity consumption of economic activities on realizing this goal. An improved STIRPAT model was developed to create the scenarios. In order to make the estimated elasticities more consistent with different variables selected to construct the formulation, a double-layer STIRPAT model was constructed, and by integrating the two equations obtained by regressing the series in each layer, we finally got the equation to describe the long-run relationship among CO 2 emissions ( I c ), the share of coal in overall energy consumption ( FM C ), coal intensity of thermal power generation ( CI p ) and electricity intensity of GDP ( EI elec ). The long term elasticities represented by the equation show that the growth of CO 2 emissions in China is quite sensitive to FM C , CI p and EI elec . After that, five scenarios were developed in order to examine the effects of China’s possible different CO 2 emission reduction policies, focusing on improving FM C , CI p and EI elec respectively. Through a rigorous analysis, we found that in order to realize the committed CO 2 emissions mitigating goal, China should obviously accelerate the pace in switching from coal to low carbon fuels, coupled with a consistent improvement in electricity efficiency of economic activities and a slightly slower improvement in the coal efficiency of thermal power generation.

Suggested Citation

  • Li Li & Jianjun Wang, 2015. "The Effects of Coal Switching and Improvements in Electricity Production Efficiency and Consumption on CO 2 Mitigation Goals in China," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:7:p:9540-9559:d:52744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/7/9540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/7/9540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng, Ming & Niu, Dongxiao & Shang, Wei, 2012. "CO2 emissions and economic development: China's 12th five-year plan," Energy Policy, Elsevier, vol. 42(C), pages 468-475.
    2. Chandran Govindaraju, V.G.R. & Tang, Chor Foon, 2013. "The dynamic links between CO2 emissions, economic growth and coal consumption in China and India," Applied Energy, Elsevier, vol. 104(C), pages 310-318.
    3. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2012. "Coal consumption, CO2 emission and economic growth in China: Empirical evidence and policy responses," Energy Economics, Elsevier, vol. 34(2), pages 518-528.
    4. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    5. Tan, Zhongfu & Li, Li & Wang, Jianjun & Wang, Jianhui, 2011. "Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method," Applied Energy, Elsevier, vol. 88(12), pages 4496-4504.
    6. Xu, Yuan & Yang, Chi-Jen & Xuan, Xiaowei, 2013. "Engineering and optimization approaches to enhance the thermal efficiency of coal electricity generation in China," Energy Policy, Elsevier, vol. 60(C), pages 356-363.
    7. Chikaraishi, Makoto & Fujiwara, Akimasa & Kaneko, Shinji & Poumanyvong, Phetkeo & Komatsu, Satoru & Kalugin, Andrey, 2015. "The moderating effects of urbanization on carbon dioxide emissions: A latent class modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 302-317.
    8. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    9. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    10. Zhang, Ming & Liu, Xiao & Wang, Wenwen & Zhou, Min, 2013. "Decomposition analysis of CO2 emissions from electricity generation in China," Energy Policy, Elsevier, vol. 52(C), pages 159-165.
    11. Li, Huanan & Mu, Hailin & Zhang, Ming & Li, Nan, 2011. "Analysis on influence factors of China's CO2 emissions based on Path–STIRPAT model," Energy Policy, Elsevier, vol. 39(11), pages 6906-6911.
    12. Geng, Yong & Zhao, Hongyan & Liu, Zhu & Xue, Bing & Fujita, Tsuyoshi & Xi, Fengming, 2013. "Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning," Energy Policy, Elsevier, vol. 60(C), pages 820-826.
    13. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    14. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    15. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    16. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    17. Xu, Jin-Hua & Fan, Ying & Yu, Song-Min, 2014. "Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation," Energy Economics, Elsevier, vol. 46(C), pages 348-359.
    18. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    19. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    20. Özbuğday, Fatih Cemil & Erbas, Bahar Celikkol, 2015. "How effective are energy efficiency and renewable energy in curbing CO2 emissions in the long run? A heterogeneous panel data analysis," Energy, Elsevier, vol. 82(C), pages 734-745.
    21. Odenberger, M. & Johnsson, F., 2007. "Achieving 60% CO2 reductions within the UK energy system--Implications for the electricity generation sector," Energy Policy, Elsevier, vol. 35(4), pages 2433-2452, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haijun Zhao & Weichun Ma & Hongjia Dong & Ping Jiang, 2017. "Analysis of Co-Effects on Air Pollutants and CO 2 Emissions Generated by End-of-Pipe Measures of Pollution Control in China’s Coal-Fired Power Plants," Sustainability, MDPI, vol. 9(4), pages 1-19, March.
    2. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    3. Xiaohua Song & Xiao Jiang & Xubei Zhang & Jinpeng Liu, 2018. "Analysis, Evaluation and Optimization Strategy of China Thermal Power Enterprises’ Business Performance Considering Environmental Costs under the Background of Carbon Trading," Sustainability, MDPI, vol. 10(6), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianjun & Li, Li, 2016. "Sustainable energy development scenario forecasting and energy saving policy analysis of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 718-724.
    2. Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
    3. Adewuyi, Adeolu O. & Awodumi, Olabanji B., 2017. "Renewable and non-renewable energy-growth-emissions linkages: Review of emerging trends with policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 275-291.
    4. Usama Al-Mulali & Ilhan Ozturk & Hooi Lean, 2015. "The influence of economic growth, urbanization, trade openness, financial development, and renewable energy on pollution in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 621-644, October.
    5. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    6. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    7. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    8. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    9. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    10. Xiangrong Ma & Jianping Ge & Wei Wang, 2017. "The relationship between urbanization, income growth and carbon dioxide emissions and the policy implications for China: a cointegrated vector error correction (VEC) analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1017-1033, June.
    11. Al-Mulali, Usama & Ozturk, Ilhan, 2015. "The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region," Energy, Elsevier, vol. 84(C), pages 382-389.
    12. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
    13. Nasre Esfahani, Mohammad & Rasoulinezhad, Ehsan, 2015. "Will be there New CO2 Emitters in the Future? Evidence of Long-run Panel Co-integration for N-11 Countries," MPRA Paper 72692, University Library of Munich, Germany.
    14. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    15. Xie, Xuan & Shao, Shuai & Lin, Boqiang, 2016. "Exploring the driving forces and mitigation pathways of CO2 emissions in China’s petroleum refining and coking industry: 1995–2031," Applied Energy, Elsevier, vol. 184(C), pages 1004-1015.
    16. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    17. Nasre Esfahani, Mohammad & Rasoulinezhad, Ehsan, 2016. "Revisiting the relationships between non-renewable energy consumption, CO2 emissions and economic growth in Iran," MPRA Paper 71124, University Library of Munich, Germany.
    18. Tan, Feifei & Lu, Zhaohua, 2015. "Current status and future choices of regional sectors-energy-related CO2 emissions: The third economic growth pole of China," Applied Energy, Elsevier, vol. 159(C), pages 237-251.
    19. Shahbaz, Muhammad & Shafiullah, Muhammad & Khalid, Usman & Song, Malin, 2020. "A nonparametric analysis of energy environmental Kuznets Curve in Chinese Provinces," Energy Economics, Elsevier, vol. 89(C).
    20. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions," Renewable Energy, Elsevier, vol. 167(C), pages 99-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:7:p:9540-9559:d:52744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.