IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v67y2017icp51-61.html
   My bibliography  Save this article

Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang

Author

Listed:
  • Wang, Changjian
  • Wang, Fei
  • Zhang, Xinlin
  • Yang, Yu
  • Su, Yongxian
  • Ye, Yuyao
  • Zhang, Hongou

Abstract

Analysis of driving factors of energy related carbon emissions from the regional perspective is necessary and helpful for China to achieve its reduction targets. An extended STIRPAT model based on the classical IPAT identity was used to determine the main driving factors for energy related carbon emissions in Xinjiang. In order to get the best understanding of driving factors on carbon emissions during 1952–2012, we divided the process into 3 stages, such as “Before Reform and Opening up” (1952–1978), “After Reform and Opening up” (1978–2000), and “Western Development” (2000–2012). Research results show that the impacts and influences of various factors on carbon emissions are different in the three different development stages. Before the Reform and Opening up (1952–1977), carbon intensity and population size are the two dominant contributors to the carbon emissions increments, while energy consumption structure is the important influencing factor in curbing carbon emissions. After the Reform and Opening up (1978–2000), economic growth and population size are the two dominant contributors to the carbon emissions increments, while carbon intensity plays the important negative effect on carbon emissions. During the Western Development (2001–2012), fixed assets investment and economic growth are the two dominant contributors to the carbon emissions increments, while carbon intensity plays the important negative effect on carbon emissions. Solving these problems effectively will be of great help for Xinjiang to harmonize economic growth and carbon emissions reduction, even environmental damage reduction.

Suggested Citation

  • Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
  • Handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:51-61
    DOI: 10.1016/j.rser.2016.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211630497X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-mulali, Usama & Binti Che Sab, Che Normee, 2012. "The impact of energy consumption and CO2 emission on the economic and financial development in 19 selected countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4365-4369.
    2. Liddle, Brantley, 2013. "Urban density and climate change: a STIRPAT analysis using city-level data," Journal of Transport Geography, Elsevier, vol. 28(C), pages 22-29.
    3. Shahbaz, Muhammad & Loganathan, Nanthakumar & Muzaffar, Ahmed Taneem & Ahmed, Khalid & Ali Jabran, Muhammad, 2016. "How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 83-93.
    4. Bilgen, S., 2014. "Structure and environmental impact of global energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 890-902.
    5. Li, Huanan & Mu, Hailin & Zhang, Ming & Gui, Shusen, 2012. "Analysis of regional difference on impact factors of China’s energy – Related CO2 emissions," Energy, Elsevier, vol. 39(1), pages 319-326.
    6. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    7. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    8. Wei Jin, 2012. "Can Technological Innovation Help China Take on Its Climate Responsibility? A Computable General Equilibrium Analysis," CAMA Working Papers 2012-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    9. Liu, Zhu & Geng, Yong & Lindner, Soeren & Guan, Dabo, 2012. "Uncovering China’s greenhouse gas emission from regional and sectoral perspectives," Energy, Elsevier, vol. 45(1), pages 1059-1068.
    10. Frank Jotzo & Paul J. Burke & Peter J. Wood & Andrew Macintosh & David I. Stern, 2012. "Decomposing the 2010 global carbon dioxide emissions rebound," Nature Climate Change, Nature, vol. 2(4), pages 213-214, April.
    11. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    12. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    13. Jin, Wei, 2012. "Can technological innovation help China take on its climate responsibility? An intertemporal general equilibrium analysis," Energy Policy, Elsevier, vol. 49(C), pages 629-641.
    14. Li, Huanan & Mu, Hailin & Zhang, Ming & Li, Nan, 2011. "Analysis on influence factors of China's CO2 emissions based on Path–STIRPAT model," Energy Policy, Elsevier, vol. 39(11), pages 6906-6911.
    15. Geng, Yong & Zhao, Hongyan & Liu, Zhu & Xue, Bing & Fujita, Tsuyoshi & Xi, Fengming, 2013. "Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning," Energy Policy, Elsevier, vol. 60(C), pages 820-826.
    16. Fan, J. & Sun, W. & Ren, D. -M., 2005. "Renewables portfolio standard and regional energy structure optimisation in China," Energy Policy, Elsevier, vol. 33(3), pages 279-287, February.
    17. Liang, Sai & Zhang, Tianzhu, 2011. "What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province," Energy Policy, Elsevier, vol. 39(11), pages 7078-7083.
    18. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    19. Tsai, Miao-Shan & Chang, Ssu-Li, 2013. "Taiwan's GHG mitigation potentials and costs: An evaluation with the MARKAL model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 294-305.
    20. Zhang, Yue-Jun, 2011. "The impact of financial development on carbon emissions: An empirical analysis in China," Energy Policy, Elsevier, vol. 39(4), pages 2197-2203, April.
    21. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M. & Sab, Che Normee Binti Che, 2013. "Exploring the relationship between urbanization, energy consumption, and CO2 emission in MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 107-112.
    22. Wong, Siang Leng & Chang, Youngho & Chia, Wai-Mun, 2013. "Energy consumption, energy R&D and real GDP in OECD countries with and without oil reserves," Energy Economics, Elsevier, vol. 40(C), pages 51-60.
    23. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    24. Changjian Wang & Fei Wang & Hongou Zhang & Yuyao Ye & Qitao Wu & Yongxian Su, 2014. "Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province," Sustainability, MDPI, vol. 6(11), pages 1-16, November.
    25. Li, You & Hewitt, C.N., 2008. "The effect of trade between China and the UK on national and global carbon dioxide emissions," Energy Policy, Elsevier, vol. 36(6), pages 1907-1914, June.
    26. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    27. Al-Mulali, Usama & Ozturk, Ilhan, 2015. "The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region," Energy, Elsevier, vol. 84(C), pages 382-389.
    28. Zhang, Bo & Chen, G.Q., 2014. "Methane emissions in China 2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 886-902.
    29. Zhang, Bo & Chen, G.Q. & Li, J.S. & Tao, L., 2014. "Methane emissions of energy activities in China 1980–2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 11-21.
    30. Sadorsky, Perry, 2013. "Do urbanization and industrialization affect energy intensity in developing countries?," Energy Economics, Elsevier, vol. 37(C), pages 52-59.
    31. Changjian Wang & Fei Wang, 2015. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
    32. Al-mulali, Usama & Lee, Janice YM & Hakim Mohammed, Abdul & Sheau-Ting, Low, 2013. "Examining the link between energy consumption, carbon dioxide emission, and economic growth in Latin America and the Caribbean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 42-48.
    33. Tan, Hao & Sun, Aijun & Lau, Henry, 2013. "CO2 embodiment in China–Australia trade: The drivers and implications," Energy Policy, Elsevier, vol. 61(C), pages 1212-1220.
    34. Li, Ke & Lin, Boqiang, 2015. "The improvement gap in energy intensity: Analysis of China's thirty provincial regions using the improved DEA (data envelopment analysis) model," Energy, Elsevier, vol. 84(C), pages 589-599.
    35. Dong, Yanli & Ishikawa, Masanobu & Liu, Xianbing & Wang, Can, 2010. "An analysis of the driving forces of CO2 emissions embodied in Japan-China trade," Energy Policy, Elsevier, vol. 38(11), pages 6784-6792, November.
    36. Jane Qiu, 2008. "China asks world to step up on climate," Nature, Nature, vol. 456(7219), pages 151-151, November.
    37. Xi, Fengming & Geng, Yong & Chen, Xudong & Zhang, Yunsong & Wang, Xinbei & Xue, Bing & Dong, Huijuan & Liu, Zhu & Ren, Wanxia & Fujita, Tsuyoshi & Zhu, Qinghua, 2011. "Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China," Energy Policy, Elsevier, vol. 39(10), pages 5999-6010, October.
    38. Kofi Adom, Philip & Bekoe, William & Amuakwa-Mensah, Franklin & Mensah, Justice Tei & Botchway, Ebo, 2012. "Carbon dioxide emissions, economic growth, industrial structure, and technical efficiency: Empirical evidence from Ghana, Senegal, and Morocco on the causal dynamics," Energy, Elsevier, vol. 47(1), pages 314-325.
    39. Liu, Xianbing & Ishikawa, Masanobu & Wang, Can & Dong, Yanli & Liu, Wenling, 2010. "Analyses of CO2 emissions embodied in Japan-China trade," Energy Policy, Elsevier, vol. 38(3), pages 1510-1518, March.
    40. Zhang, Chuanguo & Liu, Cong, 2015. "The impact of ICT industry on CO2 emissions: A regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 12-19.
    41. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
    42. Zheng, Yuhua & Luo, Dongkun, 2013. "Industrial structure and oil consumption growth path of China: Empirical evidence," Energy, Elsevier, vol. 57(C), pages 336-343.
    43. Zhang, Yanxia & Wang, Haikun & Liang, Sai & Xu, Ming & Liu, Weidong & Li, Shalang & Zhang, Rongrong & Nielsen, Chris P. & Bi, Jun, 2014. "Temporal and spatial variations in consumption-based carbon dioxide emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 60-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Xiaodong & Liu, Jixian & Shi, Qian & Georgiev, Georgi & Wu, Guangdong, 2017. "Driving forces for low carbon technology innovation in the building industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 299-315.
    2. Jiancheng Qin & Hui Tao & Minjin Zhan & Qamar Munir & Karthikeyan Brindha & Guijin Mu, 2019. "Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    3. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    4. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    5. Ling Xiong & Shaozhou Qi, 2018. "Financial Development And Carbon Emissions In Chinese Provinces: A Spatial Panel Data Analysis," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 447-464, March.
    6. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    7. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
    8. Lapatinas, Athanasios & Garas, Antonios & Boleti, Eirini & Kyriakou, Alexandra, 2019. "Economic complexity and environmental performance: Evidence from a world sample," MPRA Paper 92833, University Library of Munich, Germany.
    9. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    10. Yanan Wang & Wei Chen & Minjuan Zhao & Bowen Wang, 2019. "Analysis of the influencing factors on CO2 emissions at different urbanization levels: regional difference in China based on panel estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 627-645, March.
    11. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    12. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    13. Khan, Ali Nawaz & En, Xie & Raza, Muhammad Yousaf & Khan, Naseer Abbas & Ali, Ahsan, 2020. "Sectorial study of technological progress and CO2 emission: Insights from a developing economy," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    14. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    15. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    16. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    17. Jiancheng Qin & Hui Tao & Chinhsien Cheng & Karthikeyan Brindha & Minjin Zhan & Jianli Ding & Guijin Mu, 2020. "Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 12(3), pages 1-15, February.
    18. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    19. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    20. Changjian Wang & Fei Wang, 2015. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang," Sustainability, MDPI, vol. 7(6), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:51-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.