IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i12p2342-d123126.html
   My bibliography  Save this article

Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China

Author

Listed:
  • Pengyan Zhang

    (College of Environment and Planning, Henan University, Kaifeng, Henan 475004, China
    Collaborative Innovation Center of Urban-Rural Coordination Development, Henan 450046, China
    Department of Geography, Kent State University, Kent, OH 42240, USA)

  • Jianjian He

    (College of Environment and Planning, Henan University, Kaifeng, Henan 475004, China)

  • Xin Hong

    (Department of Geography, Kent State University, Kent, OH 42240, USA)

  • Wei Zhang

    (State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy for Environmental Planning, Beijing 100012, China)

  • Chengzhe Qin

    (School of Economic, Political and Policy Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA)

  • Bo Pang

    (College of Environment and Planning, Henan University, Kaifeng, Henan 475004, China)

  • Yanyan Li

    (College of Environment and Planning, Henan University, Kaifeng, Henan 475004, China)

  • Yu Liu

    (Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
    School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Global warming has brought increased attention to the relationship between carbon emissions and economic development. Research on the driving factors of carbon emissions from energy consumption can provide a scientific basis for regional energy savings, as well as emissions reduction and sustainable development. Henan Province is a major agricultural province in China, and it is one of most populous provinces. Industrial development and population growth are the causes of carbon emissions. The STIRPAT model was conducted for analyzing carbon emissions and the driving factors for future carbon emission in Henan Province. The results show that: carbon emissions and energy consumption in Henan Province presented a rising trend from 1995 to 2014; Energy consumption due to population growth is the main contributor to carbon emissions in Henan Province. As every 1% increase in the population, GDP per-capita, energy intensity, and the level of urbanization development will contribute to the growth of emissions by 1.099, 0.193, 0.043, and 0.542%, respectively. The optimization of the industrial structure can reduce carbon emissions in Henan Province, as suggested by the results, when the tertiary sector increased by more than 1%, the total energy consumption of carbon emissions reduced by 1.297%. The future pattern of carbon emissions in Henan Province is predicted to increase initially and then follows by a decreasing trend, according to scenario analysis; and maintaining a low population growth rate, and a high growth rate of GDP per-capita and technical level is the best mode for social and economic development.

Suggested Citation

  • Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2342-:d:123126
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/12/2342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/12/2342/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jalil, Abdul & Feridun, Mete, 2011. "The impact of growth, energy and financial development on the environment in China: A cointegration analysis," Energy Economics, Elsevier, vol. 33(2), pages 284-291, March.
    2. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.
    3. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    4. Meng, Ming & Niu, Dongxiao & Shang, Wei, 2012. "CO2 emissions and economic development: China's 12th five-year plan," Energy Policy, Elsevier, vol. 42(C), pages 468-475.
    5. Shahbaz, Muhammad & Lean, Hooi Hooi & Farooq, Abdul, 2013. "Natural gas consumption and economic growth in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 87-94.
    6. Li, Huanan & Mu, Hailin & Zhang, Ming & Gui, Shusen, 2012. "Analysis of regional difference on impact factors of China’s energy – Related CO2 emissions," Energy, Elsevier, vol. 39(1), pages 319-326.
    7. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    8. Bo Li & Xuejing Liu & Zhenhong Li, 2015. "Using the STIRPAT model to explore the factors driving regional CO 2 emissions: a case of Tianjin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1667-1685, April.
    9. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    10. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    11. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    12. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    13. Wang, Mingwei & Che, Yue & Yang, Kai & Wang, Min & Xiong, Lijun & Huang, Yuchi, 2011. "A local-scale low-carbon plan based on the STIRPAT model and the scenario method: The case of Minhang District, Shanghai, China," Energy Policy, Elsevier, vol. 39(11), pages 6981-6990.
    14. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    15. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    16. Richard L. Revesz & Peter H. Howard & Kenneth Arrow & Lawrence H. Goulder & Robert E. Kopp & Michael A. Livermore & Michael Oppenheimer & Thomas Sterner, 2014. "Global warming: Improve economic models of climate change," Nature, Nature, vol. 508(7495), pages 173-175, April.
    17. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    18. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    19. William J. Ripple & Pete Smith & Helmut Haberl & Stephen A. Montzka & Clive McAlpine & Douglas H. Boucher, 2014. "Ruminants, climate change and climate policy," Nature Climate Change, Nature, vol. 4(1), pages 2-5, January.
    20. Arouri, Mohamed El Hedi & Ben Youssef, Adel & M'henni, Hatem & Rault, Christophe, 2012. "Energy consumption, economic growth and CO2 emissions in Middle East and North African countries," Energy Policy, Elsevier, vol. 45(C), pages 342-349.
    21. Shahbaz, Muhammad & Chaudhary, A.R. & Ozturk, Ilhan, 2017. "Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model," Energy, Elsevier, vol. 122(C), pages 83-93.
    22. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    23. Shahbaz, Muhammad & Kumar Tiwari, Aviral & Nasir, Muhammad, 2013. "The effects of financial development, economic growth, coal consumption and trade openness on CO2 emissions in South Africa," Energy Policy, Elsevier, vol. 61(C), pages 1452-1459.
    24. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    25. Yu Kosaka & Shang-Ping Xie, 2013. "Recent global-warming hiatus tied to equatorial Pacific surface cooling," Nature, Nature, vol. 501(7467), pages 403-407, September.
    26. Yu Liu & Hongwei Xiao & Precious Zikhali & Yingkang Lv, 2014. "Carbon Emissions in China: A Spatial Econometric Analysis at the Regional Level," Sustainability, MDPI, vol. 6(9), pages 1-19, September.
    27. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    28. Apergis, Nicholas & Payne, James E., 2009. "CO2 emissions, energy usage, and output in Central America," Energy Policy, Elsevier, vol. 37(8), pages 3282-3286, August.
    29. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    30. Liddle, Brantley & Lung, Sidney, 2010. "Age-Structure, Urbanization, and Climate Change in Developed Countries: Revisiting STIRPAT for Disaggregated Population and Consumption-Related Environmental Impacts," MPRA Paper 59579, University Library of Munich, Germany.
    31. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    32. Albrecht, Johan & Francois, Delphine & Schoors, Koen, 2002. "A Shapley decomposition of carbon emissions without residuals," Energy Policy, Elsevier, vol. 30(9), pages 727-736, July.
    33. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    34. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    35. Gomi, Kei & Shimada, Kouji & Matsuoka, Yuzuru, 2010. "A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city," Energy Policy, Elsevier, vol. 38(9), pages 4783-4796, September.
    36. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    37. A. Baccini & S. J. Goetz & W. S. Walker & N. T. Laporte & M. Sun & D. Sulla-Menashe & J. Hackler & P. S. A. Beck & R. Dubayah & M. A. Friedl & S. Samanta & R. A. Houghton, 2012. "Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps," Nature Climate Change, Nature, vol. 2(3), pages 182-185, March.
    38. Belloumi, Mounir, 2009. "Energy consumption and GDP in Tunisia: Cointegration and causality analysis," Energy Policy, Elsevier, vol. 37(7), pages 2745-2753, July.
    39. Wang, S.S. & Zhou, D.Q. & Zhou, P. & Wang, Q.W., 2011. "CO2 emissions, energy consumption and economic growth in China: A panel data analysis," Energy Policy, Elsevier, vol. 39(9), pages 4870-4875, September.
    40. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    41. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.
    42. Saboori, Behnaz & Sulaiman, Jamalludin & Mohd, Saidatulakmal, 2012. "Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve," Energy Policy, Elsevier, vol. 51(C), pages 184-191.
    43. Alshehry, Atef Saad & Belloumi, Mounir, 2015. "Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 237-247.
    44. Al-mulali, Usama & Lee, Janice Y.M., 2013. "Estimating the impact of the financial development on energy consumption: Evidence from the GCC (Gulf Cooperation Council) countries," Energy, Elsevier, vol. 60(C), pages 215-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Wang & Jiejun Huang & Han Zhou & Jiaqi Sun & Mingkun Yao, 2022. "Carbon Emission Inversion Model from Provincial to Municipal Scale Based on Nighttime Light Remote Sensing and Improved STIRPAT," Sustainability, MDPI, vol. 14(11), pages 1-17, June.
    2. Kaili Cheng & Jing Wu & Xiaozhe Ma & Leying Wu, 2023. "Simulation of Carbon Sink of Arbor Forest Vegetation in Henan Province of China Based on CO2FIX Model," Land, MDPI, vol. 12(1), pages 1-18, January.
    3. Jiancheng Qin & Hui Tao & Minjin Zhan & Qamar Munir & Karthikeyan Brindha & Guijin Mu, 2019. "Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    4. Hongpeng Guo & Boqun Fan & Chulin Pan, 2021. "Study on Mechanisms Underlying Changes in Agricultural Carbon Emissions: A Case in Jilin Province, China, 1998–2018," IJERPH, MDPI, vol. 18(3), pages 1-17, January.
    5. Pengyan Zhang & Yu Zhang & Jay Lee & Yanyan Li & Jiaxin Yang & Wenliang Geng & Ying Liu & Tianqi Rong & Jingwen Shao & Bin Li, 2020. "Characteristics of the Spatio-Temporal Trends and Driving Factors of Industrial Development and Industrial SO 2 Emissions Based on Niche Theory: Taking Henan Province as an Example," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    6. Kong-Qing Li & Ran Lu & Rui-Wen Chu & Dou-Dou Ma & Li-Qun Zhu, 2018. "Trends and Driving Forces of Carbon Emissions from Energy Consumption: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    7. Liangen Zeng & Haiyan Lu & Yenping Liu & Yang Zhou & Haoyu Hu, 2019. "Analysis of Regional Differences and Influencing Factors on China’s Carbon Emission Efficiency in 2005–2015," Energies, MDPI, vol. 12(16), pages 1-21, August.
    8. Xin Yang & Yifei Sima & Yabo Lv & Mingwei Li, 2023. "Research on Influencing Factors of Residential Building Carbon Emissions and Carbon Peak: A Case of Henan Province in China," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    9. Yongrok Choi, 2018. "Regional Cooperation for the Sustainable Development and Management in Northeast Asia," Sustainability, MDPI, vol. 10(2), pages 1-8, February.
    10. Tianqi Rong & Pengyan Zhang & Wenlong Jing & Yu Zhang & Yanyan Li & Dan Yang & Jiaxin Yang & Hao Chang & Linna Ge, 2020. "Carbon Dioxide Emissions and Their Driving Forces of Land Use Change Based on Economic Contributive Coefficient (ECC) and Ecological Support Coefficient (ESC) in the Lower Yellow River Region (1995–20," Energies, MDPI, vol. 13(10), pages 1-18, May.
    11. Jiancheng Qin & Lei Gao & Weihu Tu & Jing He & Jingzhe Tang & Shuying Ma & Xiaoyang Zhao & Xingzhe Zhu & Karthikeyan Brindha & Hui Tao, 2022. "Decomposition and Decoupling Analysis of Carbon Emissions in Xinjiang Energy Base, China," Energies, MDPI, vol. 15(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    2. Nasre Esfahani, Mohammad & Rasoulinezhad, Ehsan, 2016. "Revisiting the relationships between non-renewable energy consumption, CO2 emissions and economic growth in Iran," MPRA Paper 71124, University Library of Munich, Germany.
    3. Lapatinas, Athanasios & Garas, Antonios & Boleti, Eirini & Kyriakou, Alexandra, 2019. "Economic complexity and environmental performance: Evidence from a world sample," MPRA Paper 92833, University Library of Munich, Germany.
    4. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    5. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    6. Al-Mulali, Usama & Ozturk, Ilhan, 2015. "The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region," Energy, Elsevier, vol. 84(C), pages 382-389.
    7. Charfeddine, Lanouar & Ben Khediri, Karim, 2016. "Financial development and environmental quality in UAE: Cointegration with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1322-1335.
    8. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    9. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    10. Mumin Atalay Cetin & Ibrahim Bakirtas, 2020. "The long-run environmental impacts of economic growth, financial development, and energy consumption: Evidence from emerging markets," Energy & Environment, , vol. 31(4), pages 634-655, June.
    11. Usama Al-Mulali & Ilhan Ozturk & Hooi Lean, 2015. "The influence of economic growth, urbanization, trade openness, financial development, and renewable energy on pollution in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 621-644, October.
    12. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    13. Xiao-Ying Dong & Qiying Ran & Yu Hao, 2019. "On the nonlinear relationship between energy consumption and economic development in China: new evidence from panel data threshold estimations," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1837-1857, July.
    14. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    15. Kais, Saidi & Sami, Hammami, 2016. "An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1101-1110.
    16. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    17. Omri, Anis & Daly, Saida & Rault, Christophe & Chaibi, Anissa, 2015. "Financial development, environmental quality, trade and economic growth: What causes what in MENA countries," Energy Economics, Elsevier, vol. 48(C), pages 242-252.
    18. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.
    19. Bouznit, Mohammed & Pablo-Romero, María del P., 2016. "CO2 emission and economic growth in Algeria," Energy Policy, Elsevier, vol. 96(C), pages 93-104.
    20. Ahad, Muhammad & Khan, Wali, 2016. "Does Globalization Impede Environmental Quality in Bangladesh? The Role of Real Economic Activities and Energy Use," MPRA Paper 76278, University Library of Munich, Germany, revised Jul 2016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2342-:d:123126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.