IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10243-d1181563.html
   My bibliography  Save this article

Research on Influencing Factors of Residential Building Carbon Emissions and Carbon Peak: A Case of Henan Province in China

Author

Listed:
  • Xin Yang

    (College of Tourism, Xinyang Normal University, Xinyang 464000, China
    Graduate School, Sehan University, Yeongam-gun 31746, Republic of Korea)

  • Yifei Sima

    (College of Architecture and Civil Engineering, Xinyang Normal University, Xinyang 464000, China)

  • Yabo Lv

    (Social Sciences Division, Xinyang Normal University, Xinyang 464000, China)

  • Mingwei Li

    (College of Tourism, Xinyang Normal University, Xinyang 464000, China)

Abstract

Buildings are considered to have significant emission reduction potential. Residential building carbon emissions, as the most significant type of building-related carbon emissions, represent a crucial factor in achieving both carbon peak and carbon neutrality targets for China. Based on carbon emission data from Henan Province, a large province located in central China, between 2010 and 2020, this study employed the Kaya-LMDI decomposition method to analyze seven driving factors of carbon emission evolution, encompassing energy, population, and income, and assessed the historical reduction in CO 2 emissions from residential buildings. Then, by integrating Kaya identity static analysis with Monte Carlo dynamic simulation, various scenarios were established to infer the future evolution trend, peak time, and potential for carbon emission reduction in residential buildings. The analysis results are as follows: (1) The carbon emissions of residential buildings in Henan exhibited a rising trend from 2010 to 2020, albeit with a decelerating growth rate. (2) Per capita household disposable income is the main driving factor for the increase in carbon emissions, but the household housing purchase index inhibits most of the growth of carbon emissions for the residential buildings in Henan, with the total carbon emission reduction of residential buildings reaches 106.42 million tons of CO 2 during the research period. (3) During the period from 2020 to 2050, residential buildings in Henan Province will exhibit an “inverted U-shaped” trend in carbon emissions under the three static scenarios. The base scenario predicts that carbon emissions will reach their peak of 131.66 million tons in 2036, while the low-carbon scenario forecasts a peak of 998.8 million tons in 2030 and the high-carbon scenario projects a peak of 138.65 million tonnes in 2041. (4) Under the dynamic simulation scenario, it is anticipated that residential buildings in Henan Province will reach their carbon peak in 2036 ± 3 years, with a corresponding carbon emission of 155.34 million tons. This study can serve as a valuable reference for the future development of low-carbon pathways within the building sector.

Suggested Citation

  • Xin Yang & Yifei Sima & Yabo Lv & Mingwei Li, 2023. "Research on Influencing Factors of Residential Building Carbon Emissions and Carbon Peak: A Case of Henan Province in China," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10243-:d:1181563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. Guofeng Wang & Maolin Liao & Jie Jiang, 2020. "Research on Agricultural Carbon Emissions and Regional Carbon Emissions Reduction Strategies in China," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    4. Hui Li & Yanan Zheng & Guan Gong & Hongtao Guo, 2023. "A Simulation Study on Peak Carbon Emission of Public Buildings—In the Case of Henan Province, China," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    5. G. Boyd & J. F. McDonald & M. Ross & D. A. Hansont, 1987. "Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    6. Zhou, Xiao & Huang, Zhou & Scheuer, Bronte & Wang, Han & Zhou, Guoqing & Liu, Yu, 2023. "High-resolution estimation of building energy consumption at the city level," Energy, Elsevier, vol. 275(C).
    7. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    8. Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
    9. Dongyang Xiao & Haipeng Niu & Jin Guo & Suxia Zhao & Liangxin Fan, 2021. "Carbon Storage Change Analysis and Emission Reduction Suggestions under Land Use Transition: A Case Study of Henan Province, China," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    10. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    11. Young-Jin Kim, 2017. "Monte Carlo vs. Fuzzy Monte Carlo Simulation for Uncertainty and Global Sensitivity Analysis," Sustainability, MDPI, vol. 9(4), pages 1-14, March.
    12. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    13. Jinwei Huo & Xinhuan Zhang & Zhiping Zhang & Yaning Chen, 2020. "Research on Population Development in Ethnic Minority Areas in the Context of China’s Population Strategy Adjustment," Sustainability, MDPI, vol. 12(19), pages 1-13, September.
    14. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuohua Zhang & Hanning Dong & Can Lu & Wei Li, 2023. "Carbon Emission Projection and Carbon Quota Allocation in the Beijing–Tianjin–Hebei Region of China under Carbon Neutrality Vision," Sustainability, MDPI, vol. 15(21), pages 1-29, October.
    2. Dinan Li & Yuge Huang & Chengzhou Guo & Haitao Wang & Jianwei Jia & Lu Huang, 2023. "Low-Carbon Optimization Design for Low-Temperature Granary Roof Insulation in Different Ecological Grain Storage Zones in China," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    3. Xinyu Han & Peng Qu & Jiaqi Wu & Beile Su & Ning Qiu & Lili Zhang, 2023. "Research on the Spatial Pattern of Carbon Emissions and Differentiated Peak Paths at the County Level in Shandong Province, China," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    4. Ye Duan & Juanjuan Zhong & Hongye Wang & Caizhi Sun, 2023. "Analysis of the Spatial and Temporal Evolution of Energy-Related CO 2 Emissions in China’s Coastal Areas and the Drivers of Industrial Enterprises above Designated Size—The Case of 82 Cities," Sustainability, MDPI, vol. 15(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    2. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).
    3. Mariana Conte Grand, 2018. "Desacople y Descomposición del Consumo Final de Energía en Argentina," CEMA Working Papers: Serie Documentos de Trabajo. 678, Universidad del CEMA.
    4. Lin, Yuancheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2023. "The carbon reduction potential by improving technical efficiency from energy sources to final services in China: An extended Kaya identity analysis," Energy, Elsevier, vol. 263(PE).
    5. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).
    6. Jena, Pradyot, 2009. "A study of changing patterns of energy consumption and energy efficiency in the Indian manufacturing sector," MPRA Paper 31195, University Library of Munich, Germany.
    7. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    8. Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    9. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    10. Hongpeng Guo & Boqun Fan & Chulin Pan, 2021. "Study on Mechanisms Underlying Changes in Agricultural Carbon Emissions: A Case in Jilin Province, China, 1998–2018," IJERPH, MDPI, vol. 18(3), pages 1-17, January.
    11. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    12. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    13. Pillai N., Vijayamohanan, 2019. "Measuring Energy Efficiency: An Application of Data Envelopment Analysis to Power Sector in Kerala," MPRA Paper 101945, University Library of Munich, Germany.
    14. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    15. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
    16. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    17. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    18. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    19. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    20. Manisha Jain, 2022. "Energy efficiency targets and tracking savings: Measurement issues in developing economies," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2022-015, Indira Gandhi Institute of Development Research, Mumbai, India.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10243-:d:1181563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.