IDEAS home Printed from https://ideas.repec.org/p/inn/wpaper/2021-22.html
   My bibliography  Save this paper

Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?

Author

Listed:
  • Octavio Fernández-Amador
  • Joseph F. Francois
  • Doris A. Oberdabernig
  • Patrick Tomberger

Abstract

Understanding the global energy network and the developments of energy efficiency is key to advance energy regulation and fight climate change. We develop a global panel dataset on energy usage inventories based on territorial production, final production and consumption over 1997-2014. We apply structural decomposition analysis to isolate energy efficiency changes and study the effectiveness of the European Union Energy Services Directive (2006/32/EC) on energy efficiency. High-income regions are net-importers of embodied energy and use a larger share of non-renewable energy than developing countries. The effectiveness of the Directive is mixed. The different ambition of national energy policies of the European Union members and some complementarity in supply chains underlie the different dynamics found. High-income countries share efficiency gains and changes in the mix of energy sources. These trends are not specific to the European Union. Energy policies in high-income countries are less effective for energy footprints. Our findings are indicative of energy leakage. Energy regulation should account for global supply chains and target energy footprints.

Suggested Citation

  • Octavio Fernández-Amador & Joseph F. Francois & Doris A. Oberdabernig & Patrick Tomberger, 2021. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Working Papers 2021-22, Faculty of Economics and Statistics, Universität Innsbruck.
  • Handle: RePEc:inn:wpaper:2021-22
    as

    Download full text from publisher

    File URL: https://www2.uibk.ac.at/downloads/c9821000/wpaper/2021-22.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nabitz, Lisa & Hirzel, Simon, 2019. "Transposing The Requirements of the Energy Efficiency Directive on Mandatory Energy Audits for Large Companies: A Policy‐Cycle‐based review of the National Implementation in the EU-28 Member States," Energy Policy, Elsevier, vol. 125(C), pages 548-561.
    2. Robert Koopman & Zhi Wang & Shang-Jin Wei, 2014. "Tracing Value-Added and Double Counting in Gross Exports," American Economic Review, American Economic Association, vol. 104(2), pages 459-494, February.
    3. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    4. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    5. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    6. Goh, Tian & Ang, B.W., 2020. "Four reasons why there is so much confusion about energy efficiency," Energy Policy, Elsevier, vol. 146(C).
    7. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    8. Antoine Mandel & Solmaria Halleck Vega & Dan-Xia Wang, 2020. "The contribution of technological diffusion to climate change mitigation: a network-based approach," Climatic Change, Springer, vol. 160(4), pages 609-620, June.
    9. Rahel Aichele & Gabriel Felbermayr, 2015. "Kyoto and Carbon Leakage: An Empirical Analysis of the Carbon Content of Bilateral Trade," The Review of Economics and Statistics, MIT Press, vol. 97(1), pages 104-115, March.
    10. Huang, Bwo-Nung & Hwang, M.J. & Yang, C.W., 2008. "Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach," Ecological Economics, Elsevier, vol. 67(1), pages 41-54, August.
    11. Fernández-Amador, Octavio & Francois, Joseph F. & Tomberger, Patrick, 2016. "Carbon dioxide emissions and international trade at the turn of the millennium," Ecological Economics, Elsevier, vol. 125(C), pages 14-26.
    12. Copeland, Brian R. & Taylor, M. Scott, 2005. "Free trade and global warming: a trade theory view of the Kyoto protocol," Journal of Environmental Economics and Management, Elsevier, vol. 49(2), pages 205-234, March.
    13. Konstantin Stadler & Richard Wood & Tatyana Bulavskaya & Carl†Johan Södersten & Moana Simas & Sarah Schmidt & Arkaitz Usubiaga & José Acosta†Fernández & Jeroen Kuenen & Martin Bruckner & Stefan, 2018. "EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi†Regional Input†Output Tables," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 502-515, June.
    14. Forin, Silvia & Radebach, Alexander & Steckel, Jan Christoph & Ward, Hauke, 2018. "The effect of industry delocalization on global energy use: A global sectoral perspective," Energy Economics, Elsevier, vol. 70(C), pages 233-243.
    15. Chang, Ming-Chung, 2014. "Energy intensity, target level of energy intensity, and room for improvement in energy intensity: An application to the study of regions in the EU," Energy Policy, Elsevier, vol. 67(C), pages 648-655.
    16. Paul de Boer & João F. D. Rodrigues, 2020. "Decomposition analysis: when to use which method?," Economic Systems Research, Taylor & Francis Journals, vol. 32(1), pages 1-28, January.
    17. Chepeliev, Maksym, 2020. "GTAP-Power 10 Data Base: A Technical Note," GTAP Research Memoranda 5938, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    18. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    19. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    20. Thomas, Samuel & Rosenow, Jan, 2020. "Drivers of increasing energy consumption in Europe and policy implications," Energy Policy, Elsevier, vol. 137(C).
    21. Paul De Boer, 2008. "Additive Structural Decomposition Analysis and Index Number Theory: An Empirical Application of the Montgomery Decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 97-109.
    22. Horowitz, Marvin J. & Bertoldi, Paolo, 2015. "A harmonized calculation model for transforming EU bottom-up energy efficiency indicators into empirical estimates of policy impacts," Energy Economics, Elsevier, vol. 51(C), pages 135-148.
    23. Maaike Bouwmeester & Jan Oosterhaven, 2013. "Specification and Aggregation Errors in Environmentally Extended Input–Output Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 307-335, November.
    24. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    25. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    26. Alcantara, Vicent & Duarte, Rosa, 2004. "Comparison of energy intensities in European Union countries. Results of a structural decomposition analysis," Energy Policy, Elsevier, vol. 32(2), pages 177-189, January.
    27. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    28. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    29. Hertwich, Edgar G., 2020. "Carbon fueling complex global value chains tripled in the period 1995–2012," Energy Economics, Elsevier, vol. 86(C).
    30. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    31. Dogan, Eyup & Altinoz, Buket & Madaleno, Mara & Taskin, Dilvin, 2020. "The impact of renewable energy consumption to economic growth: A replication and extension of Inglesi-Lotz (2016)," Energy Economics, Elsevier, vol. 90(C).
    32. Aichele, Rahel & Felbermayr, Gabriel, 2012. "Kyoto and the carbon footprint of nations," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 336-354.
    33. Timmer, Marcel P. & Los, Bart & Stehrer, Robert & de Vries, Gaaitzen J., 2016. "An Anatomy of the Global Trade Slowdown based on the WIOD 2016 Release," GGDC Research Memorandum GD-162, Groningen Growth and Development Centre, University of Groningen.
    34. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
    35. Arkaitz Usubiaga & José Acosta-Fernández, 2015. "Carbon Emission Accounting In Mrio Models: The Territory Vs. The Residence Principle," Economic Systems Research, Taylor & Francis Journals, vol. 27(4), pages 458-477, December.
    36. Cornelis, Erwin, 2019. "History and prospect of voluntary agreements on industrial energy efficiency in Europe," Energy Policy, Elsevier, vol. 132(C), pages 567-582.
    37. Inglesi-Lotz, Roula, 2016. "The impact of renewable energy consumption to economic growth: A panel data application," Energy Economics, Elsevier, vol. 53(C), pages 58-63.
    38. Berk, Istemi & Kasman, Adnan & Kılınç, Dilara, 2020. "Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries," Energy Economics, Elsevier, vol. 87(C).
    39. Kacper Szulecki & Severin Fischer & Anne Therese Gullberg & Oliver Sartor, 2016. "Shaping the ‘Energy Union': between national positions and governance innovation in EU energy and climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(5), pages 548-567, July.
    40. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    41. de Koning, Arjan & Bruckner, Martin & Lutter, Stephan & Wood, Richard & Stadler, Konstantin & Tukker, Arnold, 2015. "Effect of aggregation and disaggregation on embodied material use of products in input–output analysis," Ecological Economics, Elsevier, vol. 116(C), pages 289-299.
    42. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
    43. Richard Baldwin & Javier Lopez-Gonzalez, 2015. "Supply-chain Trade: A Portrait of Global Patterns and Several Testable Hypotheses," The World Economy, Wiley Blackwell, vol. 38(11), pages 1682-1721, November.
    44. Piñero, Pablo & Heikkinen, Mari & Mäenpää, Ilmo & Pongrácz, Eva, 2015. "Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland," Ecological Economics, Elsevier, vol. 119(C), pages 217-229.
    45. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    46. Gokul Iyer & Catherine Ledna & Leon Clarke & James Edmonds & Haewon McJeon & Page Kyle & James H Williams, 2017. "Measuring progress from nationally determined contributions to mid-century strategies," Nature Climate Change, Nature, vol. 7(12), pages 871-874, December.
    47. Ang, B.W. & Mu, A.R. & Zhou, P., 2010. "Accounting frameworks for tracking energy efficiency trends," Energy Economics, Elsevier, vol. 32(5), pages 1209-1219, September.
    48. Chen, G.Q. & Wu, X.D. & Guo, Jinlan & Meng, Jing & Li, Chaohui, 2019. "Global overview for energy use of the world economy: Household-consumption-based accounting based on the world input-output database (WIOD)," Energy Economics, Elsevier, vol. 81(C), pages 835-847.
    49. Henriques, Sofia Teives & Kander, Astrid, 2010. "The modest environmental relief resulting from the transition to a service economy," Ecological Economics, Elsevier, vol. 70(2), pages 271-282, December.
    50. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    51. Jeffrey C Peters, 2016. "The GTAP-Power Data Base: Disaggregating the Electricity Sector in the GTAP Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 209-250, June.
    52. Daniel Croner and Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and National Energy Intensity Trends," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    53. Andreas, Jan-Justus & Burns, Charlotte & Touza, Julia, 2017. "Renewable Energy as a Luxury? A Qualitative Comparative Analysis of the Role of the Economy in the EU's Renewable Energy Transitions During the ‘Double Crisis’," Ecological Economics, Elsevier, vol. 142(C), pages 81-90.
    54. Kjartan Steen-Olsen & Anne Owen & Edgar G. Hertwich & Manfred Lenzen, 2014. "Effects Of Sector Aggregation On Co 2 Multipliers In Multiregional Input-Output Analyses," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 284-302, September.
    55. Glen Peters & Robbie Andrew & James Lennox, 2011. "Constructing An Environmentally-Extended Multi-Regional Input-Output Table Using The Gtap Database," Economic Systems Research, Taylor & Francis Journals, vol. 23(2), pages 131-152.
    56. Babiker, Mustafa H., 2005. "Climate change policy, market structure, and carbon leakage," Journal of International Economics, Elsevier, vol. 65(2), pages 421-445, March.
    57. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    58. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
    59. Owen, Anne & Brockway, Paul & Brand-Correa, Lina & Bunse, Lukas & Sakai, Marco & Barrett, John, 2017. "Energy consumption-based accounts: A comparison of results using different energy extension vectors," Applied Energy, Elsevier, vol. 190(C), pages 464-473.
    60. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    61. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    62. Hertwich, Edgar, 2020. "Carbon fueling complex global value chains tripled in the period 1995-2012," SocArXiv zb3rh, Center for Open Science.
    63. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    64. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    65. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    66. Dietzenbacher, Erik & Kulionis, Viktoras & Capurro, Filippo, 2020. "Measuring the effects of energy transition: A structural decomposition analysis of the change in renewable energy use between 2000 and 2014," Applied Energy, Elsevier, vol. 258(C).
    67. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    68. Cornillie, Jan & Fankhauser, Samuel, 2004. "The energy intensity of transition countries," Energy Economics, Elsevier, vol. 26(3), pages 283-295, May.
    69. Román-Collado, Rocío & Economidou, Marina, 2021. "The role of energy efficiency in assessing the progress towards the EU energy efficiency targets of 2020: Evidence from the European productive sectors," Energy Policy, Elsevier, vol. 156(C).
    70. Chica-Olmo, Jorge & Sari-Hassoun, Salaheddine & Moya-Fernández, Pablo, 2020. "Spatial relationship between economic growth and renewable energy consumption in 26 European countries," Energy Economics, Elsevier, vol. 92(C).
    71. Kulionis, Viktoras & Wood, Richard, 2020. "Explaining decoupling in high income countries: A structural decomposition analysis of the change in energy footprint from 1970 to 2009," Energy, Elsevier, vol. 194(C).
    72. Wood, Richard & Lenzen, Manfred, 2006. "Zero-value problems of the logarithmic mean divisia index decomposition method," Energy Policy, Elsevier, vol. 34(12), pages 1326-1331, August.
    73. Jan Rosenow, Cor Leguijt, Zsuzsanna Pato, Nick Eyre, and Tina Fawcet, 2016. "An ex-ante evaluation of the EU Energy Efficiency Directive - Article 7," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    74. Johnson, Robert C. & Noguera, Guillermo, 2012. "Accounting for intermediates: Production sharing and trade in value added," Journal of International Economics, Elsevier, vol. 86(2), pages 224-236.
    75. Angel Aguiar & Maksym Chepeliev & Erwin L. Corong & Robert McDougall & Dominique van der Mensbrugghe, 2019. "The GTAP Data Base: Version 10," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    2. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    3. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    4. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    5. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
    6. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    7. José A. Camacho & Lucas Silva Almeida & Mercedes Rodríguez & Jesús Molina, 2022. "Domestic versus foreign energy use: an analysis for four European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4602-4622, April.
    8. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    9. Pothen, Frank, 2017. "A structural decomposition of global Raw Material Consumption," Ecological Economics, Elsevier, vol. 141(C), pages 154-165.
    10. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    11. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    12. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    13. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    14. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    15. Pothen, Frank & Schymura, Michael, 2015. "Bigger cakes with fewer ingredients? A comparison of material use of the world economy," Ecological Economics, Elsevier, vol. 109(C), pages 109-121.
    16. Fernández-Amador, Octavio & Francois, Joseph F. & Tomberger, Patrick, 2016. "Carbon dioxide emissions and international trade at the turn of the millennium," Ecological Economics, Elsevier, vol. 125(C), pages 14-26.
    17. Wang, Jianda & Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2023. "Factors driving aggregate service sector energy intensities in Asia and Eastern Europe: A LMDI analysis," Energy Policy, Elsevier, vol. 172(C).
    18. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    19. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    20. Kaltenegger, Oliver, 2019. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," CAWM Discussion Papers 110, University of Münster, Münster Center for Economic Policy (MEP).

    More about this item

    Keywords

    Energy usage; energy efficiency; energy footprints; renewable energy; MRIO analysis; Structural Decomposition Analysis; EU Energy Services Directive.;
    All these keywords.

    JEL classification:

    • F18 - International Economics - - Trade - - - Trade and Environment
    • F64 - International Economics - - Economic Impacts of Globalization - - - Environment
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2021-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Janette Walde (email available below). General contact details of provider: https://edirc.repec.org/data/fuibkat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.