IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v146y2020ics0301421520305498.html
   My bibliography  Save this article

Four reasons why there is so much confusion about energy efficiency

Author

Listed:
  • Goh, Tian
  • Ang, B.W.

Abstract

Energy efficiency is one of the key goals in energy and climate policies. However, it is known to be difficult to define and measure. In the literature, there are many debates on the appropriate way to measure energy efficiency performance for policy development. There is also a fair share of confusion over how different energy efficiency performance estimates should be interpreted. We discuss the sources of contention by examining different definitions, methods, measures and policy objectives that are used to evaluate energy efficiency. The objective is to present the different results and purposes in a systematic manner within the broader end goal of improving national energy efficiency. A clearer picture of the underlying assumptions, boundaries and perspectives behind energy efficiency performance is important for policy assessment. With this larger goal in mind, we conclude that policymakers are free to choose any definition, method and measure for analysis. However, results should be interpreted with respect to the method, assumptions, limitations and context that they were developed for. Specifically, differences in results at different levels of analysis should be studied in detail to understand the challenges faced in translating efficiency improvements at the device, process and sub-sector levels to national level improvements.

Suggested Citation

  • Goh, Tian & Ang, B.W., 2020. "Four reasons why there is so much confusion about energy efficiency," Energy Policy, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:enepol:v:146:y:2020:i:c:s0301421520305498
    DOI: 10.1016/j.enpol.2020.111832
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520305498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    2. Massimo Filippini & Lester C. Hunt, 2011. "Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach," The Energy Journal, , vol. 32(2), pages 59-80, April.
    3. Stephenson, Janet & Barton, Barry & Carrington, Gerry & Gnoth, Daniel & Lawson, Rob & Thorsnes, Paul, 2010. "Energy cultures: A framework for understanding energy behaviours," Energy Policy, Elsevier, vol. 38(10), pages 6120-6129, October.
    4. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    5. Bossanyi, Ervin, 1979. "UK primary energy consumption and the changing structure of final demand," Energy Policy, Elsevier, vol. 7(3), pages 253-258, September.
    6. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    7. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    8. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    9. Rose, A. & Chen, C. Y., 1991. "Sources of change in energy use in the U.S. economy, 1972-1982 : A structural decomposition analysis," Resources and Energy, Elsevier, vol. 13(1), pages 1-21, April.
    10. Robert K. Kaufmann, 2004. "The Mechanisms for Autonomous Energy Efficiency Increases: A Cointegration Analysis of the US Energy/GDP Ratio," The Energy Journal, , vol. 25(1), pages 63-86, January.
    11. Ang, B.W., 2006. "Monitoring changes in economy-wide energy efficiency: From energy-GDP ratio to composite efficiency index," Energy Policy, Elsevier, vol. 34(5), pages 574-582, March.
    12. Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB), 2015. "Sustainable Energy for All: Tracking Progress in Asia and the Pacific: A Summary Report," ADB Reports RPT157630-2, Asian Development Bank (ADB).
    13. Stepp, Matthew D. & Winebrake, James J. & Hawker, J. Scott & Skerlos, Steven J., 2009. "Greenhouse gas mitigation policies and the transportation sector: The role of feedback effects on policy effectiveness," Energy Policy, Elsevier, vol. 37(7), pages 2774-2787, July.
    14. Weber, Lukas, 1997. "Some reflections on barriers to the efficient use of energy," Energy Policy, Elsevier, vol. 25(10), pages 833-835, August.
    15. Filippini, Massimo & Hunt, Lester C. & Zorić, Jelena, 2014. "Impact of energy policy instruments on the estimated level of underlying energy efficiency in the EU residential sector," Energy Policy, Elsevier, vol. 69(C), pages 73-81.
    16. Hang, Leiming & Tu, Meizeng, 2007. "The impacts of energy prices on energy intensity: Evidence from China," Energy Policy, Elsevier, vol. 35(5), pages 2978-2988, May.
    17. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    18. Ang, B.W. & Goh, Tian, 2018. "Bridging the gap between energy-to-GDP ratio and composite energy intensity index," Energy Policy, Elsevier, vol. 119(C), pages 105-112.
    19. Ian Ayres & Sophie Raseman & Alice Shih, 2009. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage," NBER Working Papers 15386, National Bureau of Economic Research, Inc.
    20. Jay Zarnikau, 1999. "A Note: Will Tomorrow's Energy Efficiency Indices Prove Useful in Economic Studies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 139-145.
    21. Patterson, M.G., 1993. "An accounting framework for decomposing the energy-to-GDP ratio into its structural components of change," Energy, Elsevier, vol. 18(7), pages 741-761.
    22. Velasco-Fernández, Raúl & Dunlop, Tessa & Giampietro, Mario, 2020. "Fallacies of energy efficiency indicators: Recognizing the complexity of the metabolic pattern of the economy," Energy Policy, Elsevier, vol. 137(C).
    23. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    24. Huntington, Hillard G., 1994. "Been top down so long it looks like bottom up to me," Energy Policy, Elsevier, vol. 22(10), pages 833-839, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    2. Adekoya, Oluwasegun B. & Kenku, Oluwademilade T. & Oliyide, Johnson A. & Al-Faryan, Mamdouh Abdulaziz Saleh & Ogunjemilua, Oluwafemi D., 2023. "Does economic complexity drive energy efficiency and renewable energy transition?," Energy, Elsevier, vol. 278(C).
    3. Aktar, Asikha & Alam, Md. Mahmudul & Harun, Mukaramah, 2022. "Energy Efficiency Policies in Malaysia: A Critical Evaluation from the Sustainable Development Perspective," OSF Preprints 9cf3a, Center for Open Science.
    4. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    5. Chen, Ruoyu & Steinbuks, Jevgenijs, 2024. "Assessing the potential for energy efficiency improvements in Latin America and Caribbean," Energy Policy, Elsevier, vol. 192(C).
    6. Karakaya, Etem & Alataş, Sedat & Erkara, Elif & Mert, Betül & Akdoğan, Tuğba & Hiçyılmaz, Burcu, 2024. "The rebound effect of material and energy efficiency for the EU and its major trading partners," Energy Economics, Elsevier, vol. 134(C).
    7. Xufeng Su & Xiaodong Yang & Jinning Zhang & Jinling Yan & Junfeng Zhao & Jianliang Shen & Qiying Ran, 2021. "Analysis of the Impacts of Economic Growth Targets and Marketization on Energy Efficiency: Evidence from China," Sustainability, MDPI, vol. 13(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    2. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    3. Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    4. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    5. Joanne Evans & Massimo Filippini & Lester C. Hunt, 2013. "The contribution of energy efficiency towards meeting CO2 targets," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 8, pages 175-223, Edward Elgar Publishing.
    6. Filippini, Massimo & Hunt, Lester C., 2015. "Measurement of energy efficiency based on economic foundations," Energy Economics, Elsevier, vol. 52(S1), pages 5-16.
    7. Lei Jiang & Henk Folmer & Minhe Ji & Jianjun Tang, 2017. "Energy efficiency in the Chinese provinces: a fixed effects stochastic frontier spatial Durbin error panel analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 58(2), pages 301-319, March.
    8. Tajudeen, Ibrahim A., 2021. "The underlying drivers of economy-wide energy efficiency and asymmetric energy price responses," Energy Economics, Elsevier, vol. 98(C).
    9. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    10. Joanne Evans & Massimo Filippini & Lester C Hunt, 2011. "Measuring energy efficiency and its contribution towards meeting CO2 targets: estimates for 29 OECD countries," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 135, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
    11. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    12. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    13. Pillai N., Vijayamohanan & AM, Narayanan, 2019. "Energy Efficiency Indicators: Estimation Methods," MPRA Paper 97653, University Library of Munich, Germany.
    14. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    15. Pillai N., Vijayamohanan & AM, Narayanan, 2019. "Energy Efficiency: A Sectoral Analysis for Kerala," MPRA Paper 101424, University Library of Munich, Germany.
    16. Dolšak, Janez & Hrovatin, Nevenka & Zorić, Jelena, 2022. "Estimating the efficiency in overall energy consumption: Evidence from Slovenian household-level data," Energy Economics, Elsevier, vol. 114(C).
    17. Chao Bi & Minna Jia & Jingjing Zeng, 2019. "Nonlinear Effect of Public Infrastructure on Energy Intensity in China: A Panel Smooth Transition Regression Approach," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    18. Lester C. Hunt & Paraskevas Kipouros, 2023. "Energy Demand and Energy Efficiency in Developing Countries," Energies, MDPI, vol. 16(3), pages 1-26, January.
    19. Sun, Huaping & Edziah, Bless Kofi & Kporsu, Anthony Kwaku & Sarkodie, Samuel Asumadu & Taghizadeh-Hesary, Farhad, 2021. "Energy efficiency: The role of technological innovation and knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    20. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:146:y:2020:i:c:s0301421520305498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.