IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej39-2-croner.html

A Structural Decomposition Analysis of Global and National Energy Intensity Trends

Author

Listed:
  • Daniel Croner and Ivan Frankovic

Abstract

This paper analyses recent energy intensity trends for 40 major economies using a structural decomposition analysis. Our focus lies on the question whether improvements in energy intensity were caused by structural change towards a greener economy or by technological improvements. We account for intersectoral trade by using the World Input-Output database and adjust sectoral energy use via the environmentally extended input-output analysis. We find strong differences between consumption and production-based energy consumption across sectors, particularly in the construction and electricity industry. Using the three factor Logarithmic Mean Divisia Index method, our decomposition analysis shows that recent energy intensity reductions were mostly driven by technological advances. Structural changes within countries played only a minor role, whereas international trade by itself even increased global energy intensity. Compared to a previous study only using production-based sectoral energy data, we find structural effects on energy intensity reductions to be systematically weaker under consumption-based data.

Suggested Citation

  • Daniel Croner and Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and National Energy Intensity Trends," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  • Handle: RePEc:aen:journl:ej39-2-croner
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=3054
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jianda & Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2023. "Factors driving aggregate service sector energy intensities in Asia and Eastern Europe: A LMDI analysis," Energy Policy, Elsevier, vol. 172(C).
    2. Croner, Daniel & Koller, Wolfgang & Mahlberg, Bernhard, 2018. "Economic drivers of greenhouse gas-emissions in small open economies: A hierarchical structural decomposition analysis," MPRA Paper 85755, University Library of Munich, Germany.
    3. Xiuqin Zhang & Xudong Shi & Yasir Khan & Majid Khan & Saba Naz & Taimoor Hassan & Chenchen Wu & Tahir Rahman, 2023. "The Impact of Energy Intensity, Energy Productivity and Natural Resource Rents on Carbon Emissions in Morocco," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    4. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    5. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    6. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
    7. Zaidi, Syed Anees Haider & Ashraf, Rana Umair & Khan, Irfan & Li, Mingxing, 2024. "Impact of natural resource depletion on energy intensity: Moderating role of globalization, financial inclusion and trade," Resources Policy, Elsevier, vol. 94(C).
    8. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    9. Lin, Boqiang & Wang, Miao, 2021. "What drives energy intensity fall in China? Evidence from a meta-frontier approach," Applied Energy, Elsevier, vol. 281(C).
    10. Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    11. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    12. Hannesson, Rögnvaldur, 2018. "CO2 intensity and GDP per capita," Discussion Papers 2018/16, Norwegian School of Economics, Department of Business and Management Science.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej39-2-croner. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.