IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipbs0360544222023982.html
   My bibliography  Save this article

Sectoral convergence analysis of China's emissions intensity and its implications

Author

Listed:
  • Zheng, Shenglin
  • Yuan, Rong

Abstract

China has committed to reduce emission intensity (CO2 emissions per unit of GDP) by 60–65% in 2030 compared to the level of 2005. Because the convergence of emission intensity is one of the important signs of a decline in emission intensity, we examined the β-convergence and club convergence of emission intensities among China's 30 provinces for six major sectors from 1997 to 2018. In addition, to project the impacts of convergence on future CO2 emissions, we developed three scenarios (baseline scenario, club convergence scenario and the best convergence scenario) with the Bayesian hierarchical models. We find that six major sectors all show the absolute and conditional β-convergence and support the existence of club convergence. The scenario analysis suggests that the club convergence and the best convergence scenarios can reduce 44.1% and 69.8% CO2 emissions in 2050 compared with the level of baseline scenario, respectively. These emission reductions are mainly from Industry of undeveloped provinces. The emission intensity convergence of Industry in Liaoning, Hebei and Shandong will account for more than 90% of the total emissions impact of regional convergence in the best convergence scenario.

Suggested Citation

  • Zheng, Shenglin & Yuan, Rong, 2023. "Sectoral convergence analysis of China's emissions intensity and its implications," Energy, Elsevier, vol. 262(PB).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023982
    DOI: 10.1016/j.energy.2022.125516
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammadi, Hassan & Ram, Rati, 2017. "Convergence in energy consumption per capita across the US states, 1970–2013: An exploration through selected parametric and non-parametric methods," Energy Economics, Elsevier, vol. 62(C), pages 404-410.
    2. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    3. Vivek Srikrishnan & Yawen Guan & Richard S. J. Tol & Klaus Keller, 2022. "Probabilistic projections of baseline twenty-first century CO2 emissions using a simple calibrated integrated assessment model," Climatic Change, Springer, vol. 170(3), pages 1-20, February.
    4. Zhuravskaya, Ekaterina V., 2000. "Incentives to provide local public goods: fiscal federalism, Russian style," Journal of Public Economics, Elsevier, vol. 76(3), pages 337-368, June.
    5. Ganesan, P. & Rajakarunakaran, S. & Thirugnanasambandam, M. & Devaraj, D., 2015. "Artificial neural network model to predict the diesel electric generator performance and exhaust emissions," Energy, Elsevier, vol. 83(C), pages 115-124.
    6. Wang, Yiming & Zhang, Pei & Huang, Dake & Cai, Changda, 2014. "Convergence behavior of carbon dioxide emissions in China," Economic Modelling, Elsevier, vol. 43(C), pages 75-80.
    7. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    8. Hao, Yu & Liao, Hua & Wei, Yi-Ming, 2015. "Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," Applied Energy, Elsevier, vol. 142(C), pages 229-239.
    9. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    10. Julianne DeAngelo & Inês Azevedo & John Bistline & Leon Clarke & Gunnar Luderer & Edward Byers & Steven J. Davis, 2021. "Energy systems in scenarios at net-zero CO2 emissions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Adrian E. Raftery & Alec Zimmer & Dargan M. W. Frierson & Richard Startz & Peiran Liu, 2017. "Less than 2 °C warming by 2100 unlikely," Nature Climate Change, Nature, vol. 7(9), pages 637-641, September.
    12. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    13. Wang, Juan & Hu, Mingming & Tukker, Arnold & Rodrigues, João F.D., 2019. "The impact of regional convergence in energy-intensive industries on China's CO2 emissions and emission goals," Energy Economics, Elsevier, vol. 80(C), pages 512-523.
    14. Vithayasrichareon, Peerapat & MacGill, Iain F., 2012. "A Monte Carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 41(C), pages 374-392.
    15. Yu, Huayi, 2012. "The influential factors of China's regional energy intensity and its spatial linkages: 1988–2007," Energy Policy, Elsevier, vol. 45(C), pages 583-593.
    16. Peter C. B. Phillips & Donggyu Sul, 2007. "Transition Modeling and Econometric Convergence Tests," Econometrica, Econometric Society, vol. 75(6), pages 1771-1855, November.
    17. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    18. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    19. Yang Ou & Christopher Roney & Jameel Alsalam & Katherine Calvin & Jared Creason & Jae Edmonds & Allen A. Fawcett & Page Kyle & Kanishka Narayan & Patrick O’Rourke & Pralit Patel & Shaun Ragnauth & Ste, 2021. "Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    20. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
    21. Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
    22. Nazlioglu, Saban & Payne, James E. & Lee, Junsoo & Rayos-Velazquez, Marco & Karul, Cagin, 2021. "Convergence in OPEC carbon dioxide emissions: Evidence from new panel stationarity tests with factors and breaks," Economic Modelling, Elsevier, vol. 100(C).
    23. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    24. Wang, Juan & Zhang, Kezhong, 2014. "Convergence of carbon dioxide emissions in different sectors in China," Energy, Elsevier, vol. 65(C), pages 605-611.
    25. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    26. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    27. Zhao Liu & Ling Li & Yue-Jun Zhang, 2015. "Investigating the CO 2 emission differences among China’s transport sectors and their influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1323-1343, June.
    28. Haikun Wang & Xi Lu & Yu Deng & Yaoguang Sun & Chris P. Nielsen & Yifan Liu & Ge Zhu & Maoliang Bu & Jun Bi & Michael B. McElroy, 2019. "China’s CO2 peak before 2030 implied from characteristics and growth of cities," Nature Sustainability, Nature, vol. 2(8), pages 748-754, August.
    29. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    30. Qiang Du & Min Wu & Yadan Xu & Xinran Lu & Libiao Bai & Ming Yu, 2018. "Club convergence and spatial distribution dynamics of carbon intensity in China’s construction industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 519-536, November.
    31. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2020. "Stochastic convergence in per capita CO2 emissions: Evidence from emerging economies, 1921–2014," Energy Economics, Elsevier, vol. 86(C).
    32. Cialani, Catia & Mortazavi, Reza, 2021. "Sectoral analysis of club convergence in EU countries’ CO2 emissions," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Wang & Qiang Yang & Xuenan Wu & Ruichen Wang & Tilei Gao & Yuntong Liu, 2023. "A Study of Trends in Low-Energy Development Patterns in China: A Data-Driven Approach," Sustainability, MDPI, vol. 15(13), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Qichang & Ma, Di & Raza, Muhammad Yousaf & Tang, Songlin & Bai, Dingchuan, 2023. "Toward carbon peaking and neutralization: The heterogeneous stochastic convergence of CO2 emissions and the role of digital inclusive finance," Energy Economics, Elsevier, vol. 125(C).
    2. Belloc, Ignacio & Molina, José Alberto, 2023. "Are greenhouse gas emissions converging in Latin America? Implications for environmental policies," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 337-356.
    3. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    4. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    5. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.
    6. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    7. Qiang Du & Min Wu & Yadan Xu & Xinran Lu & Libiao Bai & Ming Yu, 2018. "Club convergence and spatial distribution dynamics of carbon intensity in China’s construction industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 519-536, November.
    8. Yongqing Nan & Qin Li & Jinxiang Yu & Haiya Cai & Qin Zhou, 2020. "Has the emissions intensity of industrial sulphur dioxide converged? New evidence from China’s prefectural cities with dynamic spatial panel models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5337-5369, August.
    9. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    10. Wang, Juan & Hu, Mingming & Tukker, Arnold & Rodrigues, João F.D., 2019. "The impact of regional convergence in energy-intensive industries on China's CO2 emissions and emission goals," Energy Economics, Elsevier, vol. 80(C), pages 512-523.
    11. Chao Bao & Hongjie Wang, 2019. "Trans-Provincial Convergence of per Capita Energy Consumption in Urban China, 1990–2015," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
    12. Cai, Yifei & Chang, Tsangyao & Inglesi-Lotz, Roula, 2018. "Asymmetric persistence in convergence for carbon dioxide emissions based on quantile unit root test with Fourier function," Energy, Elsevier, vol. 161(C), pages 470-481.
    13. Caiquan Bai & Yuehua Mao & Yuan Gong & Chen Feng, 2019. "Club Convergence and Factors of Per Capita Transportation Carbon Emissions in China," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    14. Parker, Steven & Bhatti, M. Ishaq, 2020. "Dynamics and drivers of per capita CO2 emissions in Asia," Energy Economics, Elsevier, vol. 89(C).
    15. Cuihong Ye & Yiguo Chen & Roula Inglesi-Lotz & Tsangyao Chang, 2020. "CO2 emissions converge in China and G7 countries? Further evidence from Fourier quantile unit root test," Energy & Environment, , vol. 31(2), pages 348-363, March.
    16. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    17. Liu, Chang & Hong, Tao & Li, Huaifeng & Wang, Lili, 2018. "From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China," Energy Policy, Elsevier, vol. 121(C), pages 300-313.
    18. Shen, Neng & Peng, Hui & Wang, Qunwei, 2021. "Spatial dependence, agglomeration externalities and the convergence of carbon productivity," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    19. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
    20. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.