IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v150y2015icp286-295.html
   My bibliography  Save this article

Province-level convergence of China’s carbon dioxide emissions

Author

Listed:
  • Zhao, Xueting
  • Wesley Burnett, J.
  • Lacombe, Donald J.

Abstract

This study offers a unique contribution to the literature by investigating the convergence of province-level carbon dioxide emission intensities among a panel of 30 provinces in China over the period 1990–2010. We use a novel, spatial dynamic panel data model to evaluate an empirically testable hypothesis of convergence among provinces. Our results suggest that: (1) CO2 emission intensities are converging across provinces in China; (2) the rate of convergence is higher with the dynamic panel data model than the cross-sectional regression models; and, (3) province-level CO2 emission intensities are spatially correlated and the rate of convergence, when controlling for spatial autocorrelation, is higher than with the non-spatial models.

Suggested Citation

  • Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
  • Handle: RePEc:eee:appene:v:150:y:2015:i:c:p:286-295
    DOI: 10.1016/j.apenergy.2015.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915004705
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Hengyun & Oxley, Les, 2012. "The emergence and evolution of regional convergence clusters in China's energy markets," Energy Economics, Elsevier, vol. 34(1), pages 82-94.
    2. Ferhan Gezici & Geoffrey J. D. Hewings, 2007. "Spatial Analysis of Regional Inequalities in Turkey," European Planning Studies, Taylor & Francis Journals, vol. 15(3), pages 383-403, April.
    3. Charles I. Jones, 1997. "On the Evolution of the World Income Distribution," Journal of Economic Perspectives, American Economic Association, vol. 11(3), pages 19-36, Summer.
    4. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
    5. Michieka, Nyakundi M. & Fletcher, Jerald & Burnett, Wesley, 2013. "An empirical analysis of the role of China’s exports on CO2 emissions," Applied Energy, Elsevier, vol. 104(C), pages 258-267.
    6. Nicolas DEBARSY (CERPE De Namur) & Cem ERTUR & James P. LeSAGE, 2010. "Interpreting Dynamic Space-Time Panel Data Models," LEO Working Papers / DR LEO 800, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    7. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    8. Burnett, J. Wesley & Bergstrom, John C. & Wetzstein, Michael E., 2013. "Carbon dioxide emissions and economic growth in the U.S," Journal of Policy Modeling, Elsevier, vol. 35(6), pages 1014-1028.
    9. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    10. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    11. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    12. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    13. Conley, Timothy G & Ligon, Ethan, 2002. "Economic Distance and Cross-Country Spillovers," Journal of Economic Growth, Springer, vol. 7(2), pages 157-187, June.
    14. Itkonen, Juha V.A., 2012. "Problems estimating the carbon Kuznets curve," Energy, Elsevier, vol. 39(1), pages 274-280.
    15. Joseph E. Aldy, 2007. "Divergence in State-Level Per Capita Carbon Dioxide Emissions," Land Economics, University of Wisconsin Press, vol. 83(3), pages 353-369.
    16. Nazrul Islam, 2003. "What have We Learnt from the Convergence Debate?," Journal of Economic Surveys, Wiley Blackwell, vol. 17(3), pages 309-362, July.
    17. Quah, Danny, 1993. " Galton's Fallacy and Tests of the Convergence Hypothesis," Scandinavian Journal of Economics, Wiley Blackwell, vol. 95(4), pages 427-443, December.
    18. Ezcurra, Roberto, 2007. "Distribution dynamics of energy intensities: A cross-country analysis," Energy Policy, Elsevier, vol. 35(10), pages 5254-5259, October.
    19. Liddle, Brantley, 2010. "Revisiting world energy intensity convergence for regional differences," Applied Energy, Elsevier, vol. 87(10), pages 3218-3225, October.
    20. Herrerias, M.J., 2012. "World energy intensity convergence revisited: A weighted distribution dynamics approach," Energy Policy, Elsevier, vol. 49(C), pages 383-399.
    21. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    22. Herrerias, M.J., 2012. "CO2 weighted convergence across the EU-25 countries (1920–2007)," Applied Energy, Elsevier, vol. 92(C), pages 9-16.
    23. Joseph Aldy, 2006. "Per Capita Carbon Dioxide Emissions: Convergence or Divergence?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 533-555, April.
    24. Duro, Juan Antonio & Alcántara, Vicent & Padilla, Emilio, 2010. "International inequality in energy intensity levels and the role of production composition and energy efficiency: An analysis of OECD countries," Ecological Economics, Elsevier, vol. 69(12), pages 2468-2474, October.
    25. González, Domingo & Martínez, Manuel, 2012. "Changes in CO2 emission intensities in the Mexican industry," Energy Policy, Elsevier, vol. 51(C), pages 149-163.
    26. Judson, Ruth A. & Owen, Ann L., 1999. "Estimating dynamic panel data models: a guide for macroeconomists," Economics Letters, Elsevier, vol. 65(1), pages 9-15, October.
    27. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    28. Tan, Zhongfu & Li, Li & Wang, Jianjun & Wang, Jianhui, 2011. "Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method," Applied Energy, Elsevier, vol. 88(12), pages 4496-4504.
    29. Steckel, Jan Christoph & Jakob, Michael & Marschinski, Robert & Luderer, Gunnar, 2011. "From carbonization to decarbonization?--Past trends and future scenarios for China's CO2 emissions," Energy Policy, Elsevier, vol. 39(6), pages 3443-3455, June.
    30. Zhang, Shuwei & Bauer, Nico & Luderer, Gunnar & Kriegler, Elmar, 2014. "Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND," Applied Energy, Elsevier, vol. 115(C), pages 445-455.
    31. Sergio Rey & Brett Montouri, 1999. "US Regional Income Convergence: A Spatial Econometric Perspective," Regional Studies, Taylor & Francis Journals, vol. 33(2), pages 143-156.
    32. Herrerias, M.J. & Liu, G., 2013. "Electricity intensity across Chinese provinces: New evidence on convergence and threshold effects," Energy Economics, Elsevier, vol. 36(C), pages 268-276.
    33. Nazrul Islam, 1995. "Growth Empirics: A Panel Data Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 110(4), pages 1127-1170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, Open Access Journal, vol. 9(1), pages 1-19, January.
    2. Xueping Tao & Ping Wang & Bangzhu Zhu, 2016. "Measuring the Interprovincial CO 2 Emissions Considering Electric Power Dispatching in China: From Production and Consumption Perspectives," Sustainability, MDPI, Open Access Journal, vol. 8(6), pages 1-12, May.
    3. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    4. Fernández-Amador, Octavio & Oberdabernig, Doris & Tomberger, Patrick, 2017. "Testing for Convergence in Carbon Dioxide Emissions using a Bayesian Robust Structural Model," Papers 1101, World Trade Institute.
    5. repec:eee:eneeco:v:63:y:2017:i:c:p:365-372 is not listed on IDEAS

    More about this item

    Keywords

    CO2 emission intensity; Convergence; Spatial dynamic panel data; China;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:150:y:2015:i:c:p:286-295. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.