IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5002-d858640.html
   My bibliography  Save this article

Direct and Indirect Carbon Emission from Household Consumption Based on LMDI and SDA Model: A Decomposition and Comparison Analysis

Author

Listed:
  • Jingjing Chen

    (College of the Environment & Ecology, Xiamen University, Xiamen 361102, China)

  • Yangyang Lin

    (College of the Environment & Ecology, Xiamen University, Xiamen 361102, China)

  • Xiaojun Wang

    (College of the Environment & Ecology, Xiamen University, Xiamen 361102, China)

  • Bingjing Mao

    (College of the Environment & Ecology, Xiamen University, Xiamen 361102, China)

  • Lihong Peng

    (College of the Environment & Ecology, Xiamen University, Xiamen 361102, China)

Abstract

Household consumption has become an important field of carbon dioxide emissions. Urban–rural disparity in the household carbon emissions (HCEs) of residents and their influencing factors are relevant to HCE reduction. Taking Fujian as the study area, the LMDI and SDA models were used to analyze the effects of influencing factors for the direct household carbon emissions (DHCEs) and indirect carbon emissions (IHCEs) of urban and rural residents from 2006 to 2018. The HCEs continue to rise, approximately 65% from the IHCEs in 2017, and urban areas occupied 67% in 2018. The gap between urban and rural per capita HCEs is narrowing. In 2017, approximately 75% of urban per capita HCEs came from the IHCEs, while the per capita DHCEs’ occupation exceeded the IHCEs in rural areas. Per capita consumption expenditure has the largest positive effect on the DHCEs and IHCEs in urban and rural areas. With the urbanization process, the inhibition effect of rural DHCEs is larger than the positive effect of the urban DHCEs, while the positive impact on urban areas is more substantial than on rural areas in the IHCEs. Combined with regional differences, urban and rural areas should take “common but differentiated” emission reduction responsibilities.

Suggested Citation

  • Jingjing Chen & Yangyang Lin & Xiaojun Wang & Bingjing Mao & Lihong Peng, 2022. "Direct and Indirect Carbon Emission from Household Consumption Based on LMDI and SDA Model: A Decomposition and Comparison Analysis," Energies, MDPI, vol. 15(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5002-:d:858640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5002/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5002/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Xinye & Wei, Chu & Qin, Ping & Guo, Jin & Yu, Yihua & Song, Feng & Chen, Zhanming, 2014. "Characteristics of residential energy consumption in China: Findings from a household survey," Energy Policy, Elsevier, vol. 75(C), pages 126-135.
    2. Wei, Yi-Ming & Liu, Lan-Cui & Fan, Ying & Wu, Gang, 2007. "The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China's residents," Energy Policy, Elsevier, vol. 35(1), pages 247-257, January.
    3. Chen, G.Q. & Wu, X.D. & Guo, Jinlan & Meng, Jing & Li, Chaohui, 2019. "Global overview for energy use of the world economy: Household-consumption-based accounting based on the world input-output database (WIOD)," Energy Economics, Elsevier, vol. 81(C), pages 835-847.
    4. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    5. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    6. Verma, Pramit & Kumari, Tanu & Raghubanshi, Akhilesh Singh, 2021. "Energy emissions, consumption and impact of urban households: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    8. Yao, Chunsheng & Chen, Chongying & Li, Ming, 2012. "Analysis of rural residential energy consumption and corresponding carbon emissions in China," Energy Policy, Elsevier, vol. 41(C), pages 445-450.
    9. Pachauri, Shonali & Spreng, Daniel, 2002. "Direct and indirect energy requirements of households in India," Energy Policy, Elsevier, vol. 30(6), pages 511-523, May.
    10. Bin, Shui & Dowlatabadi, Hadi, 2005. "Corrigendum to "Consumer lifestyles approach to US energy use and the related CO2 emissions": [Energy Policy 33 (2005) 197-208]," Energy Policy, Elsevier, vol. 33(10), pages 1362-1363, July.
    11. Donglan, Zha & Dequn, Zhou & Peng, Zhou, 2010. "Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis," Energy Policy, Elsevier, vol. 38(7), pages 3377-3383, July.
    12. Clare Hanmer & Charlie Wilson & Oreane Y. Edelenbosch & Detlef P. van Vuuren, 2022. "Translating Global Integrated Assessment Model Output into Lifestyle Change Pathways at the Country and Household Level," Energies, MDPI, vol. 15(5), pages 1-31, February.
    13. Wang, Shubin & Sun, Shaolong & Zhao, Erlong & Wang, Shouyang, 2021. "Urban and rural differences with regional assessment of household energy consumption in China," Energy, Elsevier, vol. 232(C).
    14. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "The impact of household consumption on energy use and CO2 emissions in China," Energy, Elsevier, vol. 36(1), pages 656-670.
    15. Mario Morales-Máximo & José Guadalupe Rutiaga-Quiñones & Omar Masera & Víctor Manuel Ruiz-García, 2022. "Briquettes from Pinus spp. Residues: Energy Savings and Emissions Mitigation in the Rural Sector," Energies, MDPI, vol. 15(9), pages 1-15, May.
    16. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    17. Allinson, David & Irvine, Katherine N. & Edmondson, Jill L. & Tiwary, Abhishek & Hill, Graeme & Morris, Jonathan & Bell, Margaret & Davies, Zoe G. & Firth, Steven K. & Fisher, Jill & Gaston, Kevin J. , 2016. "Measurement and analysis of household carbon: The case of a UK city," Applied Energy, Elsevier, vol. 164(C), pages 871-881.
    18. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    19. Lu Jiang & Bowenpeng Ding & Xiaonan Shi & Chunhua Li & Yamei Chen, 2022. "Household Energy Consumption Patterns and Carbon Emissions for the Megacities—Evidence from Guangzhou, China," Energies, MDPI, vol. 15(8), pages 1-21, April.
    20. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    21. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    22. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    23. Diana Ivanova & Milena Büchs, 2020. "Household Sharing for Carbon and Energy Reductions: The Case of EU Countries," Energies, MDPI, vol. 13(8), pages 1-28, April.
    24. Zhu, Qin & Peng, Xizhe & Wu, Kaiya, 2012. "Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model," Energy Policy, Elsevier, vol. 48(C), pages 618-626.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan, Jinyan & Wang, Chao & Wang, Huihui & Zhang, Fan & Li, Zhihui, 2024. "Pathways to achieve carbon emission peak and carbon neutrality by 2060: A case study in the Beijing-Tianjin-Hebei region, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Laura Cavalli & Chiara Boeri, 2023. "Carbon neutral lifestyles and NDCs: advice and policy perspectives," Working Papers 2023.07, Fondazione Eni Enrico Mattei.
    3. Shan Yang & Shangkai Zhu & Gao Deng & Huan Li, 2022. "Study on Influencing Factors and Spatial Effects of Carbon Emissions Based on Logarithmic Mean Divisia Index Model: A Case Study of Hunan Province," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    4. Cavalli, Laura & Boeri, Chiara, 2023. "Carbon Neutral Lifestyles and NDCs: Advice and Policy Perspectives," FEEM Working Papers 334237, Fondazione Eni Enrico Mattei (FEEM).
    5. Luo, Haizhi & Li, Yingyue & Gao, Xinyu & Meng, Xiangzhao & Yang, Xiaohu & Yan, Jinyue, 2023. "Carbon emission prediction model of prefecture-level administrative region: A land-use-based case study of Xi'an city, China," Applied Energy, Elsevier, vol. 348(C).
    6. Laura Cavalli & Chiara Boeri, 2023. "Citizen-centred policy and behavioural change towards carbon neutrality: perspectives and recommendations," Briefs, Fondazione Eni Enrico Mattei, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    2. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    3. Lina Liu & Jiansheng Qu & Afton Clarke-Sather & Tek Narayan Maraseni & Jiaxing Pang, 2017. "Spatial Variations and Determinants of Per Capita Household CO 2 Emissions (PHCEs) in China," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    4. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    5. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    6. Qi, Wei & Li, Guangdong, 2020. "Residential carbon emission embedded in China's inter-provincial population migration," Energy Policy, Elsevier, vol. 136(C).
    7. Wenwen Wang & Ming Zhang, 2015. "Direct and indirect energy consumption of rural households in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1693-1705, December.
    8. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    9. Shu Yang & Dingtao Zhao & Yanrui Wu & Jin Fan, 2013. "Regional Variation in Carbon Emissions and its Driving Forces in China: An Index Decomposition Analysis," Energy & Environment, , vol. 24(7-8), pages 1249-1270, December.
    10. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    11. Pedro J. Zarco-Periñán & Fco Javier Zarco-Soto & Irene M. Zarco-Soto & José L. Martínez-Ramos & Rafael Sánchez-Durán, 2022. "CO 2 Emissions in Buildings: A Synopsis of Current Studies," Energies, MDPI, vol. 15(18), pages 1-10, September.
    12. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    13. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    14. Yuling Sun & Junsong Jia & Min Ju & Chundi Chen, 2022. "Spatiotemporal Dynamics of Direct Carbon Emission and Policy Implication of Energy Transition for China’s Residential Consumption Sector by the Methods of Social Network Analysis and Geographically We," Land, MDPI, vol. 11(7), pages 1-26, July.
    15. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    16. Xin Li & Xiaoqiong He & Xiyu Luo & Xiandan Cui & Minxi Wang, 2020. "Exploring the characteristics and drivers of indirect energy consumption of urban and rural households from a sectoral perspective," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 907-924, October.
    17. Yanyi Zhu & Youpei Hu, 2023. "The Correlation between Urban Form and Carbon Emissions: A Bibliometric and Literature Review," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    18. Lan-Cui Liu & Gang Wu & Jin-Nan Wang & Yi-Ming Wei, 2010. "China's carbon emissions from urban and rural households during 1992-2007," CEEP-BIT Working Papers 12, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    19. Zhu, Qin & Peng, Xizhe & Wu, Kaiya, 2012. "Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model," Energy Policy, Elsevier, vol. 48(C), pages 618-626.
    20. Haiyan Zhang & Michael L. Lahr, 2018. "Households’ Energy Consumption Change in China: A Multi-Regional Perspective," Sustainability, MDPI, vol. 10(7), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5002-:d:858640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.