IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923008528.html
   My bibliography  Save this article

Carbon emission prediction model of prefecture-level administrative region: A land-use-based case study of Xi'an city, China

Author

Listed:
  • Luo, Haizhi
  • Li, Yingyue
  • Gao, Xinyu
  • Meng, Xiangzhao
  • Yang, Xiaohu
  • Yan, Jinyue

Abstract

Climate change has become a global concern, and the prediction of carbon emissions is key to achieving carbon-reduction goals. The existing framework cannot accurately reflect the spatial distribution of carbon emissions, making it difficult to guide urban planning and management. Therefore, in this study, a carbon emission spatial simulation and prediction model was established. The model includes the GIS-Kernel Density sub-model for subdividing built-up area, the Land Use-Carbon Emission sub-model for establishing the correlation between land use and carbon emissions, the Multi Objective Programming-Principal Component Analysis-BP neural network sub-model for presetting development scenarios, and the Patch-generating Land-use Simulation sub-model for predicting. Xi'an was chosen as the study site, and two extreme scenarios were determined. A total of 373,318 development paths were segmented from the interval, and the optimal path was selected. All scenarios were simulated, and the carbon emissions and their spatial distribution were calculated. The results showed that the overall accuracy of the simulation exceeded 90%. Under the optimal path, Xi'an's carbon emissions reach 60.6 million tons at peak time, which will be reduced to 47.38 million tons by 2060. In addition, the model analyzed the temporal and spatial changes of carbon sources and sinks and drew up the path of carbon reduction by technology and urban planning. This model can provide a reference for regional carbon-reduction planning and carbon reduction technology implantation. It can propose strategies from the perspective of planning and management.

Suggested Citation

  • Luo, Haizhi & Li, Yingyue & Gao, Xinyu & Meng, Xiangzhao & Yang, Xiaohu & Yan, Jinyue, 2023. "Carbon emission prediction model of prefecture-level administrative region: A land-use-based case study of Xi'an city, China," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008528
    DOI: 10.1016/j.apenergy.2023.121488
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923008528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Guochang & Gao, Zhengye & Tian, Lixin & Fu, Min, 2022. "What drives urban carbon emission efficiency? – Spatial analysis based on nighttime light data," Applied Energy, Elsevier, vol. 312(C).
    2. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    3. Cheng, Fangwei & Luo, Hongxi & Jenkins, Jesse D. & Larson, Eric D., 2023. "The value of low- and negative-carbon fuels in the transition to net-zero emission economies: Lifecycle greenhouse gas emissions and cost assessments across multiple fuel types," Applied Energy, Elsevier, vol. 331(C).
    4. Zhao Xin-gang & Wang Wei & Hu Shuran & Liu Xuan, 2023. "Impacts of Government Policies on the Adoption of Biomass Power: A System Dynamic Perspective," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
    5. Zhuo, Chengfeng & Xie, Yuping & Mao, Yanhua & Chen, Pengqin & Li, Yiqiao, 2022. "Can cross-regional environmental protection promote urban green development: Zero-sum game or win-win choice?," Energy Economics, Elsevier, vol. 106(C).
    6. Yuanqing Wang & Liu Yang & Sunsheng Han & Chao Li & T. V. Ramachandra, 2017. "Urban CO2 emissions in Xi’an and Bangalore by commuters: implications for controlling urban transportation carbon dioxide emissions in developing countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 993-1019, October.
    7. Li Li & Zhichao Chen & Shidong Wang, 2022. "Optimization of Spatial Land Use Patterns with Low Carbon Target: A Case Study of Sanmenxia, China," IJERPH, MDPI, vol. 19(21), pages 1-22, October.
    8. Juanjuan Qin & Liguo Ren & Liangjie Xia, 2017. "Carbon Emission Reduction and Pricing Strategies of Supply Chain under Various Demand Forecasting Scenarios," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-27, February.
    9. Sensen Zhang & Zhenggang Huo & Chencheng Zhai, 2022. "Building Carbon Emission Scenario Prediction Using STIRPAT and GA-BP Neural Network Model," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    10. Boxuan Zhao & Shujie Li & Zhaoshun Liu, 2022. "Multi-Scenario Simulation and Prediction of Regional Habitat Quality Based on a System Dynamic and Patch-Generating Land-Use Simulation Coupling Model—A Case Study of Jilin Province," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    11. Huang, Xinyu & Li, Fangfei & Xiao, Tian & Guo, Junfei & Wang, Fan & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism," Applied Energy, Elsevier, vol. 331(C).
    12. Zhenhua Zhang & Jingxue Zhang & Yanchao Feng, 2021. "Assessment of the Carbon Emission Reduction Effect of the Air Pollution Prevention and Control Action Plan in China," IJERPH, MDPI, vol. 18(24), pages 1-13, December.
    13. Jinjie Zhao & Lei Kou & Haitao Wang & Xiaoyu He & Zhihui Xiong & Chaoqiang Liu & Hao Cui, 2022. "Carbon Emission Prediction Model and Analysis in the Yellow River Basin Based on a Machine Learning Method," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    14. Chen, Hao & Qi, Shaozhou & Zhang, Jihong, 2022. "Towards carbon neutrality with Chinese characteristics: From an integrated perspective of economic growth-equity-environment," Applied Energy, Elsevier, vol. 324(C).
    15. Wei-ping Lou & Hai-yan Chen & Xin-fa Qiu & Qi-yi Tang & Feng Zheng, 2012. "Assessment of economic losses from tropical cyclone disasters based on PCA-BP," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 819-829, February.
    16. Jingheng Wang & Yecui Hu & Rong Song & Wei Wang, 2022. "Research on the Optimal Allocation of Ecological Land from the Perspective of Human Needs—Taking Hechi City, Guangxi as an Example," IJERPH, MDPI, vol. 19(19), pages 1-22, September.
    17. Liu, Yue & Tian, Lixin & Sun, Huaping & Zhang, Xiling & Kong, Chuimin, 2022. "Option pricing of carbon asset and its application in digital decision-making of carbon asset," Applied Energy, Elsevier, vol. 310(C).
    18. Han Wang & Yujie Jin & Xingming Hong & Fuan Tian & Jianxian Wu & Xin Nie, 2022. "Integrating IPAT and CLUMondo Models to Assess the Impact of Carbon Peak on Land Use," Land, MDPI, vol. 11(4), pages 1-16, April.
    19. Mengyuan Wang & Xiaoming Qi & Zehong Li & Maogui Hu, 2020. "Evaluation of Climatic Condition Suitability for Elderly Care Industry Development in Prefecture-Level Cities in China," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    20. Huang, Ren & Zhang, Sufang & Wang, Peng, 2022. "Key areas and pathways for carbon emissions reduction in Beijing for the “Dual Carbon” targets," Energy Policy, Elsevier, vol. 164(C).
    21. Zhang, Wei & Li, Guoxiang & Guo, Fanyong, 2022. "Does carbon emissions trading promote green technology innovation in China?," Applied Energy, Elsevier, vol. 315(C).
    22. Jingjing Chen & Yangyang Lin & Xiaojun Wang & Bingjing Mao & Lihong Peng, 2022. "Direct and Indirect Carbon Emission from Household Consumption Based on LMDI and SDA Model: A Decomposition and Comparison Analysis," Energies, MDPI, vol. 15(14), pages 1-22, July.
    23. Xia, Chuyu & Chen, Bin, 2020. "Urban land-carbon nexus based on ecological network analysis," Applied Energy, Elsevier, vol. 276(C).
    24. Cai, Liya & Luo, Ji & Wang, Minghui & Guo, Jianfeng & Duan, Jinglin & Li, Jingtao & Li, Shuo & Liu, Liting & Ren, Dangpei, 2023. "Pathways for municipalities to achieve carbon emission peak and carbon neutrality: A study based on the LEAP model," Energy, Elsevier, vol. 262(PB).
    25. Olusanya Elisa Olubusoye & Dasauki Musa & Salvatore Ercolano, 2020. "Carbon Emissions And Economic Growth In Africa: Are They Related?," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1850400-185, January.
    26. Jingbo Liu & Haoyuan Feng & Kun Wang, 2022. "The Low-Carbon City Pilot Policy and Urban Land Use Efficiency: A Policy Assessment from China," Land, MDPI, vol. 11(5), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Li & Zhaoshun Liu & Shujie Li & Yingxue Li & Weiyu Wang, 2023. "Urban Land Carbon Emission and Carbon Emission Intensity Prediction Based on Patch-Generating Land Use Simulation Model and Grid with Multiple Scenarios in Tianjin," Land, MDPI, vol. 12(12), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhichao Ma & Jie Zhang & Huanhuan Wang & Shaochan Gao, 2023. "Optimization of Sustainable Bi-Objective Cold-Chain Logistics Route Considering Carbon Emissions and Customers’ Immediate Demands in China," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    2. Jie Gao & Wu Zhang & Chunbaixue Yang & Qun Wang & Rui Yuan & Rui Wang & Limiao Zhang & Zhijian Li & Xiaoli Luo, 2023. "A Comparative Study of China’s Carbon Neutrality Policy and International Research Keywords under the Background of Decarbonization Plans in China," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    3. Na Yu & Jianghua Chen & Lei Cheng, 2022. "Evolutionary Game Analysis of Carbon Emission Reduction between Government and Enterprises under Carbon Quota Trading Policy," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    4. Xiaolan Chen & Qinggang Meng & Jianing Shi & Yufei Liu & Jing Sun & Wanfang Shen, 2022. "Regional Differences and Convergence of Carbon Emissions Intensity in Cities along the Yellow River Basin in China," Land, MDPI, vol. 11(7), pages 1-19, July.
    5. Yaohui Liu & Wenyi Liu & Peiyuan Qiu & Jie Zhou & Linke Pang, 2023. "Spatiotemporal Evolution and Correlation Analysis of Carbon Emissions in the Nine Provinces along the Yellow River since the 21st Century Using Nighttime Light Data," Land, MDPI, vol. 12(7), pages 1-19, July.
    6. Li, Lei & Ma, Shaojun & Zheng, Yilin & Ma, Xiaoyu & Duan, Kaifeng, 2022. "Do regional integration policies matter? Evidence from a quasi-natural experiment on heterogeneous green innovation," Energy Economics, Elsevier, vol. 116(C).
    7. Zhaoxue Gai & Ying Xu & Guoming Du, 2023. "Spatio-Temporal Differentiation and Driving Factors of Carbon Storage in Cultivated Land-Use Transition," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    8. Wang, Peng & Huang, Ren & Zhang, Sufang & Liu, Xiaoli, 2023. "Pathways of carbon emissions reduction under the water-energy constraint: A case study of Beijing in China," Energy Policy, Elsevier, vol. 173(C).
    9. Xue, Fei & Yao, Enjian, 2022. "Impact analysis of residential relocation on ownership, usage, and carbon-dioxide emissions of private cars," Energy, Elsevier, vol. 252(C).
    10. Jiaqi Wu & Qian Zhang & Yangdong Lu & Tianxi Qin & Jianyong Bai, 2023. "Source-Load Coordinated Low-Carbon Economic Dispatch of Microgrid including Electric Vehicles," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    11. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    12. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    13. Xingwei Li & Jiachi Dai & Jinrong He & Jingru Li & Yicheng Huang & Xiang Liu & Qiong Shen, 2022. "Mechanism of Enterprise Green Innovation Behavior Considering Coevolution Theory," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
    14. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    15. Zhen Wang & Xupeng Zhang & Chaozheng Zhang & Qing Yang, 2022. "How Regional Integration Affects Urban Green Development Efficiency: Evidence from Urban Agglomeration in the Middle Reaches of the Yangtze River," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    16. Xiaoqi Li & Dingfei Guo & Chao Feng, 2022. "The Carbon Emissions Trading Policy of China: Does It Really Promote the Enterprises’ Green Technology Innovations?," IJERPH, MDPI, vol. 19(21), pages 1-15, November.
    17. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    18. Jinchao Huang & Shuang Meng & Jiajie Yu, 2023. "The Effects of the Low-Carbon Pilot City Program on Green Innovation: Evidence from China," Land, MDPI, vol. 12(8), pages 1-26, August.
    19. Lan, Bingying & Dong, Ke & Li, Li & Lei, Yalin & Wu, Sanmang & Hua, Ershi & Sun, Ruyi, 2023. "CO2 emission reduction pathways of iron and steel industry in Shandong based on CO2 emission equity and efficiency," Resources Policy, Elsevier, vol. 81(C).
    20. Yelin Dai & Yue Liu & Xuhui Ding & Chundu Wu & Yu Chen, 2022. "Environmental Regulation Promotes Eco-Efficiency through Industrial Transfer: Evidence from the Yangtze River Economic Belt in China," IJERPH, MDPI, vol. 19(16), pages 1-31, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.