IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2566-d1656498.html
   My bibliography  Save this article

Hierarchical Optimization Strategy for Integrated Water–Wind–Solar System Considering Load Control of Electric Vehicle Charging Stations

Author

Listed:
  • Junyi Yu

    (The School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Siyang Liao

    (The School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Jie Zhang

    (Wenshan Electricity Supply Bureau, Yunnan Power Grid Corporation Ltd., Wenshan 663000, China)

Abstract

For a high proportion of new energy with access to the grid, the typical random volatility of wind power and photovoltaic output greatly increases the peak load of the grid; in addition, the problem of wind and solar abandonment needs to be solved. This paper proposes the use of electric vehicle charging stations as new peak load resources to participate in grid dispatching. First, according to the actual operation and regulation characteristics of the load of EV charging stations, a refined regulation model enabling charging stations to participate in grid peak load regulation is established; then, combined with the deep peak load regulation model of hydropower units, in order to minimize system abandonment and minimize operating costs, a hierarchical optimization model for the joint peak load regulation of charging stations and hydropower deep regulation is established; finally, taking the actual power grid system as an example, a deep reinforcement learning algorithm is used to solve and analyze the problem, and the effectiveness of the scheme is verified. This study provides valuable insights into the coordinated optimization of electric vehicle charging stations and hydro–wind–solar systems for seamless integration into grid peak-shaving services.

Suggested Citation

  • Junyi Yu & Siyang Liao & Jie Zhang, 2025. "Hierarchical Optimization Strategy for Integrated Water–Wind–Solar System Considering Load Control of Electric Vehicle Charging Stations," Energies, MDPI, vol. 18(10), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2566-:d:1656498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2566/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2566-:d:1656498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.