IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5625-d1105069.html
   My bibliography  Save this article

DE-Based Design of an Intelligent and Conventional Hybrid Control System with IPFC for AGC of Interconnected Power System

Author

Listed:
  • Solomon Feleke

    (Department of Electrical and Computer Engineering, Debre Berhan University, Debre Berhan 445, Ethiopia)

  • Balamurali Pydi

    (Department of Electrical & Electronics Engineering, Aditya Institute of Technology & Management (A), Tekkali 532201, AP, India)

  • Raavi Satish

    (Department of Electrical & Electronics Engineering, Anil Neerukonda Institute of Technology and Science (A), Visakhapatnam 531162, AP, India)

  • Degarege Anteneh

    (Department of Electrical and Computer Engineering, Debre Berhan University, Debre Berhan 445, Ethiopia)

  • Kareem M. AboRas

    (Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

  • Hossam Kotb

    (Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

  • Mohammed Alharbi

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Mohamed Abuagreb

    (Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA)

Abstract

In this study, a fuzzy proportional integral derivative controller (FPID) was adjusted using the differential evolution (DE) method to enhance the automated generation control (AGC) of a three-zone reheat-type power system. The objective function used in this study was an integral of the time-weighted absolute error (ITAE). In the optimization, the gain control parameters of the proportional integral (PI), the integral (I), and FPID were optimized and compared to improve the limitations drawn by the controller over a few parameters. To demonstrate that FPID controllers with IPFC produce better and more accurate optimization results than integral and PI controllers optimized by DE, the interline power flow control (IPFC) of a flexible AC transmission system (FACTS) device with suitable connections and control parameter optimization was used. Also, the particle swarm optimization (PSO) PID with IPFC was compared with the proposed DEFPID + IPFC, and better results were achieved by using the DE technique. Similarly, to demonstrate the suggested technology’s strong control capacity, random load changes were applied to the system in various conditions, and it was demonstrated that the suggested control unit easily tolerated random load perturbations and returned the system to a stable functioning state.

Suggested Citation

  • Solomon Feleke & Balamurali Pydi & Raavi Satish & Degarege Anteneh & Kareem M. AboRas & Hossam Kotb & Mohammed Alharbi & Mohamed Abuagreb, 2023. "DE-Based Design of an Intelligent and Conventional Hybrid Control System with IPFC for AGC of Interconnected Power System," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5625-:d:1105069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    2. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
    3. Yu, Haijun & Dai, Hongliang & Tian, Guangdong & Wu, Benben & Xie, Yinghao & Zhu, Ying & Zhang, Tongzhu & Fathollahi-Fard, Amir Mohammad & He, Qi & Tang, Hong, 2021. "Key technology and application analysis of quick coding for recovery of retired energy vehicle battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Ramana Pilla & Ahmad Taher Azar & Tulasichandra Sekhar Gorripotu, 2019. "Impact of Flexible AC Transmission System Devices on Automatic Generation Control with a Metaheuristic Based Fuzzy PID Controller," Energies, MDPI, vol. 12(21), pages 1-19, November.
    5. Solomon Feleke & Raavi Satish & Workagegn Tatek & Almoataz Y. Abdelaziz & Adel El-Shahat, 2022. "DE-Algorithm-Optimized Fuzzy-PID Controller for AGC of Integrated Multi Area Power System with HVDC Link," Energies, MDPI, vol. 15(17), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solomon Feleke & Raavi Satish & Workagegn Tatek & Almoataz Y. Abdelaziz & Adel El-Shahat, 2022. "DE-Algorithm-Optimized Fuzzy-PID Controller for AGC of Integrated Multi Area Power System with HVDC Link," Energies, MDPI, vol. 15(17), pages 1-21, August.
    2. Amil Daraz & Suheel Abdullah Malik & Athar Waseem & Ahmad Taher Azar & Ihsan Ul Haq & Zahid Ullah & Sheraz Aslam, 2021. "Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller," Energies, MDPI, vol. 14(18), pages 1-18, September.
    3. Sadeq D. Al-Majidi & Mohammed Kh. AL-Nussairi & Ali Jasim Mohammed & Adel Manaa Dakhil & Maysam F. Abbod & Hamed S. Al-Raweshidy, 2022. "Design of a Load Frequency Controller Based on an Optimal Neural Network," Energies, MDPI, vol. 15(17), pages 1-28, August.
    4. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    5. Amil Daraz & Suheel Abdullah Malik & Ihsan Ul Haq & Khan Bahadar Khan & Ghulam Fareed Laghari & Farhan Zafar, 2020. "Modified PID controller for automatic generation control of multi-source interconnected power system using fitness dependent optimizer algorithm," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    6. Liu, Chang-Yi & Wang, Hui & Tang, Juan & Chang, Ching-Ter & Liu, Zhi, 2021. "Optimal recovery model in a used batteries closed-loop supply chain considering uncertain residual capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    7. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    9. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    10. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    11. Kaleem Ullah & Abdul Basit & Zahid Ullah & Fahad R. Albogamy & Ghulam Hafeez, 2022. "Automatic Generation Control in Modern Power Systems with Wind Power and Electric Vehicles," Energies, MDPI, vol. 15(5), pages 1-24, February.
    12. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    13. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    14. Li, Yuming & Wang, Tingyu & Li, Xinxi & Zhang, Guoqing & Chen, Kai & Yang, Wensheng, 2022. "Experimental investigation on thermal management system with flame retardant flexible phase change material for retired battery module," Applied Energy, Elsevier, vol. 327(C).
    15. Parisa Rafigh & Ali Akbar Akbari & Hadi Mohammadi Bidhandi & Ali Husseinzadeh Kashan, 2022. "A sustainable supply chain network considering lot sizing with quantity discounts under disruption risks: centralized and decentralized models," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1387-1432, October.
    16. Mohammed Alharbi & Muhammad Ragab & Kareem M. AboRas & Hossam Kotb & Masoud Dashtdar & Mokhtar Shouran & Elmazeg Elgamli, 2023. "Innovative AVR-LFC Design for a Multi-Area Power System Using Hybrid Fractional-Order PI and PIDD 2 Controllers Based on Dandelion Optimizer," Mathematics, MDPI, vol. 11(6), pages 1-45, March.
    17. Danny Ochoa & Sergio Martinez, 2021. "Analytical Approach to Understanding the Effects of Implementing Fast-Frequency Response by Wind Turbines on the Short-Term Operation of Power Systems," Energies, MDPI, vol. 14(12), pages 1-22, June.
    18. Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "SMES-GCSC Coordination for Frequency and Voltage Regulation in a Multi-Area and Multi-Source Power System with Penetration of Electric Vehicles and Renewable Energy Sources," Energies, MDPI, vol. 16(1), pages 1-27, December.
    19. Adrian Nocoń & Stefan Paszek, 2023. "A Comprehensive Review of Power System Stabilizers," Energies, MDPI, vol. 16(4), pages 1-32, February.
    20. Kaleem Ullah & Zahid Ullah & Sheraz Aslam & Muhammad Salik Salam & Muhammad Asjad Salahuddin & Muhammad Farooq Umer & Mujtaba Humayon & Haris Shaheer, 2023. "Wind Farms and Flexible Loads Contribution in Automatic Generation Control: An Extensive Review and Simulation," Energies, MDPI, vol. 16(14), pages 1-34, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5625-:d:1105069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.