IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1723-d1037785.html
   My bibliography  Save this article

Impacts of Government Policies on the Adoption of Biomass Power: A System Dynamic Perspective

Author

Listed:
  • Zhao Xin-gang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Wang Wei

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Hu Shuran

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Liu Xuan

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

Abstract

As a kind of renewable energy, biomass power has great development potential in mitigating greenhouse gas emissions. Therefore, under the background of carbon peak and carbon neutrality, the diffusion of biomass power generation technology has practical significance. To address these issues, this paper constructs a system dynamics model to study the impact of different policy effects on the diffusion of biomass power generation technologies. The results show that the feed-in tariff policy can significantly promote the installed capacity growth of biomass power generation projects; on the other hand, carbon emission trading increases the investment value of projects and promotes the growth of the installed capacity of biomass power generation projects, to a certain extent, so relevant policies need to be improved to achieve the promotion of biomass power generation technology in the future.

Suggested Citation

  • Zhao Xin-gang & Wang Wei & Hu Shuran & Liu Xuan, 2023. "Impacts of Government Policies on the Adoption of Biomass Power: A System Dynamic Perspective," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1723-:d:1037785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dinica, Valentina, 2006. "Support systems for the diffusion of renewable energy technologies--an investor perspective," Energy Policy, Elsevier, vol. 34(4), pages 461-480, March.
    2. Yu-zhuo, Zhang & Xin-gang, Zhao & Ling-zhi, Ren & Ji, Liang & Ping-kuo, Liu, 2017. "The development of China's biomass power industry under feed-in tariff and renewable portfolio standard: A system dynamics analysis," Energy, Elsevier, vol. 139(C), pages 947-961.
    3. Liu, Jicheng & Wang, Sijia & Wei, Qiushuang & Yan, Suli, 2014. "Present situation, problems and solutions of China׳s biomass power generation industry," Energy Policy, Elsevier, vol. 70(C), pages 144-151.
    4. Li, Yanan & Lin, Jun & Qian, Yanjun & Li, Dehong, 2023. "Feed-in tariff policy for biomass power generation: Incorporating the feedstock acquisition process," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1113-1132.
    5. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    6. Lu, Ze-Yu & Li, Wen-Hua & Xie, Bai-Chen & Shang, Li-Feng, 2015. "Study on China’s wind power development path—Based on the target for 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 197-208.
    7. Zhao, Zhen-yu & Yan, Hong, 2012. "Assessment of the biomass power generation industry in China," Renewable Energy, Elsevier, vol. 37(1), pages 53-60.
    8. Mingming Zhang & Dequn Zhou & Hao Ding & Jingliang Jin, 2016. "Biomass Power Generation Investment in China: A Real Options Evaluation," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    9. Borges, Cosme P. & Sobczak, Jéssica C. & Silberg, Timothy R. & Uriona-Maldonado, Mauricio & Vaz, Caroline R., 2021. "A systems modeling approach to estimate biogas potential from biomass sources in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    11. Ahmad, Salman & Tahar, Razman Mat & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Rahim, Ruzairi Abdul, 2015. "Role of feed-in tariff policy in promoting solar photovoltaic investments in Malaysia: A system dynamics approach," Energy, Elsevier, vol. 84(C), pages 808-815.
    12. He, Jiaxin & Liu, Ying & Lin, Boqiang, 2018. "Should China support the development of biomass power generation?," Energy, Elsevier, vol. 163(C), pages 416-425.
    13. Zhang, Libo & Chen, Changqi & Wang, Qunwei & Zhou, Dequn, 2021. "The impact of feed-in tariff reduction and renewable portfolio standard on the development of distributed photovoltaic generation in China," Energy, Elsevier, vol. 232(C).
    14. Yu, Xianyu & Ge, Shengxian & Zhou, Dequn & Wang, Qunwei & Chang, Ching-Ter & Sang, Xiuzhi, 2022. "Whether feed-in tariff can be effectively replaced or not? An integrated analysis of renewable portfolio standards and green certificate trading," Energy, Elsevier, vol. 245(C).
    15. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
    16. Zhang, Qin & Zhou, Dequn & Zhou, Peng & Ding, Hao, 2013. "Cost Analysis of straw-based power generation in Jiangsu Province, China," Applied Energy, Elsevier, vol. 102(C), pages 785-793.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    2. Luo, Haizhi & Li, Yingyue & Gao, Xinyu & Meng, Xiangzhao & Yang, Xiaohu & Yan, Jinyue, 2023. "Carbon emission prediction model of prefecture-level administrative region: A land-use-based case study of Xi'an city, China," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xingping & Luo, Kaiyan & Tan, Qinliang, 2016. "A feedstock supply model integrating the official organization for China's biomass generation plants," Energy Policy, Elsevier, vol. 97(C), pages 276-290.
    2. He, Jiaxin & Liu, Ying & Lin, Boqiang, 2018. "Should China support the development of biomass power generation?," Energy, Elsevier, vol. 163(C), pages 416-425.
    3. Mingming Zhang & Dequn Zhou & Hao Ding & Jingliang Jin, 2016. "Biomass Power Generation Investment in China: A Real Options Evaluation," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    4. Juanjuan Wu & Jian Zhang & Weiming Yi & Hongzhen Cai & Yang Li & Zhanpeng Su, 2021. "A Game-Theoretic Analysis of Incentive Effects for Agribiomass Power Generation Supply Chain in China," Energies, MDPI, vol. 14(3), pages 1-18, January.
    5. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2015. "Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix," Energy Policy, Elsevier, vol. 84(C), pages 155-165.
    6. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
    7. Kwag, Kyuhyeong & Shin, Hansol & Oh, Hyobin & Yun, Sangmin & Kim, Tae Hyun & Hwang, Pyeong-Ik & Kim, Wook, 2023. "Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market," Energy, Elsevier, vol. 263(PD).
    8. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    9. Yuan, Jiahang & Luo, Xinggang & Ding, Xianghai & Liu, Chunlai & Li, Cunbin, 2019. "Biomass power generation fuel procurement and storage modes evaluation: A case study in Jilin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 75-86.
    10. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    11. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    12. Chen, Huadong & Wang, Can & Cai, Wenjia & Wang, Jianhui, 2018. "Simulating the impact of investment preference on low-carbon transition in power sector," Applied Energy, Elsevier, vol. 217(C), pages 440-455.
    13. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    14. Hu, Yanlong & Huang, Weibin & Wang, Jing & Chen, Shijun & Zhang, Jie, 2016. "Current status, challenges, and perspectives of Sichuan׳s renewable energy development in Southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1373-1385.
    15. Wen, Wen & Zhang, Qin, 2015. "A design of straw acquisition mode for China's straw power plant based on supply chain coordination," Renewable Energy, Elsevier, vol. 76(C), pages 369-374.
    16. Hao Lv & Hao Ding & Dequn Zhou & Peng Zhou, 2014. "A Site Selection Model for a Straw-Based Power Generation Plant with CO 2 Emissions," Sustainability, MDPI, vol. 6(10), pages 1-16, October.
    17. Tan, Zhizhou & Zeng, Xianhai & Lin, Boqiang, 2023. "How do multiple policy incentives influence investors’ decisions on biomass co-firing combined with carbon capture and storage retrofit projects for coal-fired power plants?," Energy, Elsevier, vol. 278(PB).
    18. Zhang, Qin & Zhou, Dequn & Fang, Xiaomeng, 2014. "Analysis on the policies of biomass power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 926-935.
    19. Tomas Baležentis & Dalia Štreimikienė, 2019. "Sustainability in the Electricity Sector through Advanced Technologies: Energy Mix Transition and Smart Grid Technology in China," Energies, MDPI, vol. 12(6), pages 1-21, March.
    20. Song, Xiao-hua & Han, Jing-jing & Zhang, Lu & Zhao, Cai-ping & Wang, Peng & Liu, Xiao-yan & Li, Qiao-chu, 2021. "Impacts of renewable portfolio standards on multi-market coupling trading of renewable energy in China: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1723-:d:1037785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.