IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ics0360544223011581.html
   My bibliography  Save this article

Inter-regional economic-environmental correlation effects of power sector in China

Author

Listed:
  • Chen, Weiming
  • Zhang, Zhenjun
  • Chen, Kaiyuan

Abstract

Power sector is the pillar industry to promote China's rapid economic growth. It is also one of the sectors with the largest carbon emissions and water consumption. The green transformation of the power sector has become the focus of China's provincial economic and environmental policies. However, due to the complex inter-provincial power sector linkage, provincial power policies have spillover and overlapping effects, making it difficult for policies to coordinate and complement each other. Here, we quantify the value-added, CO2 emissions and water consumption driven by inter-provincial power sector linkage in China, and proposes differentiated policies at provincial and sectoral levels for green transformation of power sector. By quantifying the economic and environmental correlation effects among China's provincial power sectors, we found that low-carbon transformation of power sector in industrial provinces have higher economic costs. East and North China's policies committed to emission reduction in power sector can save more water.

Suggested Citation

  • Chen, Weiming & Zhang, Zhenjun & Chen, Kaiyuan, 2023. "Inter-regional economic-environmental correlation effects of power sector in China," Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011581
    DOI: 10.1016/j.energy.2023.127764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223011581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bo Meng & Norihoko Yamano, 2017. "Compilation of a regionally extended inter-country input–output table and its application to global value chain analyses," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-38, December.
    2. Pol Antràs & Davin Chor, 2013. "Organizing the Global Value Chain," Econometrica, Econometric Society, vol. 81(6), pages 2127-2204, November.
    3. Robert Koopman & Zhi Wang & Shang-Jin Wei, 2014. "Tracing Value-Added and Double Counting in Gross Exports," American Economic Review, American Economic Association, vol. 104(2), pages 459-494, February.
    4. Guo, Shan & Jiang, Li & Shen, Geoffrey Q.P., 2019. "Embodied pasture land use change in China 2000-2015: From the perspective of globalization," Land Use Policy, Elsevier, vol. 82(C), pages 476-485.
    5. Emilio Depetris-Chauvin & Ömer Özak, 2020. "The origins of the division of labor in pre-industrial times," Journal of Economic Growth, Springer, vol. 25(3), pages 297-340, September.
    6. Yu, Zhongjue & Geng, Yong & Calzadilla, Alvaro & Bleischwitz, Raimund, 2022. "China's unconventional carbon emissions trading market: The impact of a rate-based cap in the power generation sector," Energy, Elsevier, vol. 255(C).
    7. Giuliani, Elisa & Pietrobelli, Carlo & Rabellotti, Roberta, 2005. "Upgrading in Global Value Chains: Lessons from Latin American Clusters," World Development, Elsevier, vol. 33(4), pages 549-573, April.
    8. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    9. Chen, Z.M. & Chen, G.Q., 2011. "Embodied carbon dioxide emission at supra-national scale: A coalition analysis for G7, BRIC, and the rest of the world," Energy Policy, Elsevier, vol. 39(5), pages 2899-2909, May.
    10. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    11. Jiang, Xueting, 2022. "Drivers of air pollution reduction paradox: Empirical evidence from directly measured unit-level data of Chinese power plants," Energy, Elsevier, vol. 254(PB).
    12. Chen, Weiming & Lei, Yalin & Feng, Kuishuang & Wu, Sanmang & Li, Li, 2019. "Provincial emission accounting for CO2 mitigation in China: Insights from production, consumption and income perspectives," Applied Energy, Elsevier, vol. 255(C).
    13. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    14. Ge, Zewen & Geng, Yong & Wei, Wendong & Jiang, Mingkun & Chen, Bin & Li, Jiashuo, 2023. "Embodied carbon emissions induced by the construction of hydropower infrastructure in China," Energy Policy, Elsevier, vol. 173(C).
    15. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    16. Wang, Juan & Li, Ziming & Wu, Tong & Wu, Siyu & Yin, Tingwei, 2022. "The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector," Energy, Elsevier, vol. 255(C).
    17. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    18. Zhang, Sufang & Jiao, Yiqian & Chen, Wenjun, 2017. "Demand-side management (DSM) in the context of China's on-going power sector reform," Energy Policy, Elsevier, vol. 100(C), pages 1-8.
    19. PU, Zhengning & YUE, Shujing & GAO, Peng, 2020. "The driving factors of China's embodied carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    20. Sun, Chuanwang & Li, Zhi & Ma, Tiemeng & He, Runyong, 2019. "Carbon efficiency and international specialization position: Evidence from global value chain position index of manufacture," Energy Policy, Elsevier, vol. 128(C), pages 235-242.
    21. Ye, Chusheng & Ye, Qin & Shi, Xunpeng & Sun, Yongping, 2020. "Technology gap, global value chain and carbon intensity: Evidence from global manufacturing industries," Energy Policy, Elsevier, vol. 137(C).
    22. Wei, Yi-Ming & Chen, Hao & Chyong, Chi Kong & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun, 2018. "Economic dispatch savings in the coal-fired power sector: An empirical study of China," Energy Economics, Elsevier, vol. 74(C), pages 330-342.
    23. Li, Mingquan & Gao, Huiwen & Abdulla, Ahmed & Shan, Rui & Gao, Shuo, 2022. "Combined effects of carbon pricing and power market reform on CO2 emissions reduction in China's electricity sector," Energy, Elsevier, vol. 257(C).
    24. Xie, Pinjie & Yang, Fan & Mu, Zhuowen & Gao, Shuangshuang, 2020. "Influencing factors of the decoupling relationship between CO2 emission and economic development in China’s power industry," Energy, Elsevier, vol. 209(C).
    25. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    26. Hawdon, David & Pearson, Peter, 1995. "Input-output simulations of energy, environment, economy interactions in the UK," Energy Economics, Elsevier, vol. 17(1), pages 73-86, January.
    27. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    28. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    29. Lindner, Soeren & Liu, Zhu & Guan, Dabo & Geng, Yong & Li, Xin, 2013. "CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 164-172.
    30. Bart Los & Marcel P. Timmer & Gaaitzen J. de Vries, 2016. "Tracing Value-Added and Double Counting in Gross Exports: Comment," American Economic Review, American Economic Association, vol. 106(7), pages 1958-1966, July.
    31. Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian, 2015. "A multi-region optimization planning model for China’s power sector," Applied Energy, Elsevier, vol. 137(C), pages 413-426.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    2. Yan, Bingqian & Xia, Yan & Jiang, Xuemei, 2023. "Carbon productivity and value-added generations: Regional heterogeneity along global value chain," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 111-125.
    3. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    4. Araújo, Inácio Fernandes de & Perobelli, Fernando Salgueiro & Faria, Weslem Rodrigues, 2021. "Regional and global patterns of participation in value chains: Evidence from Brazil," International Economics, Elsevier, vol. 165(C), pages 154-171.
    5. Michael Sposi & Kei-Mu Yi & Jing Zhang, 2021. "Trade Integration, Global Value Chains, and Capital Accumulation," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 69(3), pages 505-539, September.
    6. Meng, Bo & Ye, Ming, 2022. "Smile curves in global value chains: Foreign- vs. domestic-owned firms; the U.S. vs. China," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 15-29.
    7. Nenci, Silvia & Fusacchia, Ilaria & Giunta, Anna & Montalbano, Pierluigi & Pietrobelli, Carlo, 2022. "Mapping global value chain participation and positioning in agriculture and food: stylised facts, empirical evidence and critical issues," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 11(2), July.
    8. Pu, Zhengning & Fu, Jiasha & Zhang, Chi & Shao, Jun, 2018. "Structure decomposition analysis of embodied carbon from transition economies," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 1-12.
    9. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    10. Ju, Yiyi & Fujikawa, Kiyoshi, 2019. "Modeling the cost transmission mechanism of the emission trading scheme in China," Applied Energy, Elsevier, vol. 236(C), pages 172-182.
    11. Pol Antràs & Davin Chor, 2021. "Global Value Chains," NBER Working Papers 28549, National Bureau of Economic Research, Inc.
    12. Zhang, Sheng & Yu, Ran & Wen, Zuhui & Xu, Jiayu & Liu, Peihan & Zhou, Yunqiao & Zheng, Xiaoqi & Wang, Lei & Hao, Jiming, 2023. "Impact of labor and energy allocation imbalance on carbon emission efficiency in China's industrial sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. He, Yaxing & Huo, Weidong & Yu, Jie, 2023. "Tracing the regional dual value chains: Measurement on the production position and evidence from China," Journal of Asian Economics, Elsevier, vol. 85(C).
    14. Baldwin, Richard & Freeman, Rebecca & Theodorakopoulos, Angelos, 2022. "Horses for courses: measuring foreign supply chain exposure," Bank of England working papers 996, Bank of England.
    15. Fan, Xiaojia & Wu, Sanmang & Lei, Yalin & Li, Shantong & Li, Li, 2020. "Have China's resource-based regions improved in the division of GVCs? — Taking Shanxi Province as an example," Resources Policy, Elsevier, vol. 68(C).
    16. Armando Rungi & Davide Del Prete, 2017. "The 'Smile Curve': where Value is Added along Supply Chains," Working Papers 05/2017, IMT School for Advanced Studies Lucca, revised Mar 2017.
    17. Aleksandra Parteka & Joanna Wolszczak-Derlacz, 2019. "Global Value Chains and Wages: Multi-Country Evidence from Linked Worker-Industry Data," Open Economies Review, Springer, vol. 30(3), pages 505-539, July.
    18. Zhong, Sheng & Goh, Tian & Su, Bin, 2022. "Patterns and drivers of embodied carbon intensity in international exports: The role of trade and environmental policies," Energy Economics, Elsevier, vol. 114(C).
    19. Ding, Tao & Ning, Yadong & Zhang, Yan, 2018. "The contribution of China’s bilateral trade to global carbon emissions in the context of globalization," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 78-88.
    20. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.