IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v379y2025ics0306261924023183.html
   My bibliography  Save this article

A copula-based whole system model to understand the environmental and economic impacts of grid-scale energy storage

Author

Listed:
  • He, Fan
  • Leach, Matthew
  • Short, Michael
  • Fan, Yurui
  • Liu, Lirong

Abstract

Energy storage is important in future power systems. However, the role of grid-scale energy storage in the power system and in the whole socio-economic system is unclear. A copula-based whole system model is developed to explore the economic and environmental effects of grid-scale energy storage, thus supporting the decision-making at micro and macro levels. A power system optimisation model is linked with an input-output model, and the copula function is embedded in the model to reflect the multiple and interactive uncertainties from electricity demand, emission constraints, and sector disaggregation. We conducted case studies on China and the UK in 2025 considering different storage technologies (Pumped hydro, Battery, Flywheels storage) to show the differences related with power systems and economic structures. We find that increasing energy storage capacity leads to increase in renewable generation capacity (solar generation in China and wind generation in the UK). Thus, it can reduce their total economy-wide carbon emissions. Uncertainty in sector disaggregation will have a large impact on carbon emissions in some extreme cases, especially in those sectors closely linked to the power sector and with high emission intensity.

Suggested Citation

  • He, Fan & Leach, Matthew & Short, Michael & Fan, Yurui & Liu, Lirong, 2025. "A copula-based whole system model to understand the environmental and economic impacts of grid-scale energy storage," Applied Energy, Elsevier, vol. 379(C).
  • Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023183
    DOI: 10.1016/j.apenergy.2024.124935
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924023183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kai Xu & Youguang Guo & Gang Lei & Jianguo Zhu, 2023. "A Review of Flywheel Energy Storage System Technologies," Energies, MDPI, vol. 16(18), pages 1-32, September.
    2. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    3. Guannan He & Dharik S. Mallapragada & Abhishek Bose & Clara F. Heuberger & Emre Genc{c}er, 2021. "Sector coupling via hydrogen to lower the cost of energy system decarbonization," Papers 2103.03442, arXiv.org.
    4. Sören Lindner & Julien Legault & Dabo Guan, 2012. "Disaggregating Input--Output Models With Incomplete Information," Economic Systems Research, Taylor & Francis Journals, vol. 24(4), pages 329-347, April.
    5. Lin, Yashen & Johnson, Jeremiah X. & Mathieu, Johanna L., 2016. "Emissions impacts of using energy storage for power system reserves," Applied Energy, Elsevier, vol. 168(C), pages 444-456.
    6. Li, Ru & Tang, Bao-Jun & Yu, Biying & Liao, Hua & Zhang, Chen & Wei, Yi-Ming, 2022. "Cost-optimal operation strategy for integrating large scale of renewable energy in China’s power system: From a multi-regional perspective," Applied Energy, Elsevier, vol. 325(C).
    7. Miller,Ronald E. & Blair,Peter D., 2009. "Input-Output Analysis," Cambridge Books, Cambridge University Press, number 9780521517133.
    8. Miller,Ronald E. & Blair,Peter D., 2009. "Input-Output Analysis," Cambridge Books, Cambridge University Press, number 9780521739023.
    9. Liqun Peng & Denise L. Mauzerall & Yaofeng D. Zhong & Gang He, 2023. "Heterogeneous effects of battery storage deployment strategies on decarbonization of provincial power systems in China," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Cárdenas, Bruno & Swinfen-Styles, Lawrie & Rouse, James & Hoskin, Adam & Xu, Weiqing & Garvey, S.D., 2021. "Energy storage capacity vs. renewable penetration: A study for the UK," Renewable Energy, Elsevier, vol. 171(C), pages 849-867.
    11. Kendall Mongird & Vilayanur Viswanathan & Patrick Balducci & Jan Alam & Vanshika Fotedar & Vladimir Koritarov & Boualem Hadjerioua, 2020. "An Evaluation of Energy Storage Cost and Performance Characteristics," Energies, MDPI, vol. 13(13), pages 1-53, June.
    12. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Pimm, Andrew J. & Palczewski, Jan & Barbour, Edward R. & Cockerill, Tim T., 2021. "Using electricity storage to reduce greenhouse gas emissions," Applied Energy, Elsevier, vol. 282(PA).
    14. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    15. Li, Mingquan & Shan, Rui & Virguez, Edgar & Patiño-Echeverri, Dalia & Gao, Shuo & Ma, Haichao, 2022. "Energy storage reduces costs and emissions even without large penetration of renewable energy: The case of China Southern Power Grid," Energy Policy, Elsevier, vol. 161(C).
    16. Li, Canbing & Chen, Dawei & Li, Yingjie & Li, Furong & Li, Ran & Wu, Qiuwei & Liu, Xubin & Wei, Juan & He, Shengtao & Zhou, Bin & Allen, Stephen, 2022. "Exploring the interaction between renewables and energy storage for zero-carbon electricity systems," Energy, Elsevier, vol. 261(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johann Audrain & Mateo Cordier & Sylvie Faucheux & Martin O’Connor, 2013. "Écologie territoriale et indicateurs pour un développement durable de la métropole parisienne," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(3), pages 523-559.
    2. Daniel Croner & Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and NationalEnergy Intensity Trends," The Energy Journal, , vol. 39(2), pages 103-122, March.
    3. Arne J. Nagengast & Robert Stehrer, 2016. "Accounting for the Differences Between Gross and Value Added Trade Balances," The World Economy, Wiley Blackwell, vol. 39(9), pages 1276-1306, September.
    4. repec:ilo:ilowps:485511 is not listed on IDEAS
    5. Cosgrove, Paul & Roulstone, Tony & Zachary, Stan, 2023. "Intermittency and periodicity in net-zero renewable energy systems with storage," Renewable Energy, Elsevier, vol. 212(C), pages 299-307.
    6. Garry Mcdonald, 2010. "A didactic Input-Output model for territorial ecology analyses," Working Papers hal-00911640, HAL.
    7. Moretto, Antonio Carlos & Rodrigues, Rossana Lott & Sesso Filho, Umberto Antonio & Guilhoto, Joaquim José Martins & Maia, Katy, 2012. "Regiões polarizadas no Paraná: relações inter setoriais e inter regionais em 2006," MPRA Paper 46996, University Library of Munich, Germany.
    8. Eduardo A. Haddad & Juan M. G. Samaniego, Alexandre A. Porsse, Diego Ochoa, Santiago Ochoa, Luiz G. A. de Souza, 2011. "Interregional Input-Ouptut System for Ecuador, 2007: Methodology and Results," Working Papers, Department of Economics 2011_08, University of São Paulo (FEA-USP).
    9. Matías Piaggio & Vicent Alcántara Escolano & Emilio Padilla, 2012. "Economic structure and key sectors analysis of greenhouse gas emissions in Uruguay," Working Papers wpdea1204, Department of Applied Economics at Universitat Autonoma of Barcelona.
    10. Sadao, Nishimura, 2010. "Towards Analysis of Vertical Structure of Industries: a method and its application to U.S. industries," MPRA Paper 27464, University Library of Munich, Germany.
    11. Gemechu, E.D. & Butnar, I. & Llop, M. & Castells, F., 2012. "Environmental tax on products and services based on their carbon footprint: A case study of the pulp and paper sector," Energy Policy, Elsevier, vol. 50(C), pages 336-344.
    12. Hermannsson, Kristinn & McIntyre, Stuart G., 2014. "Local consumption and territorial based accounting for CO2 emissions," Ecological Economics, Elsevier, vol. 104(C), pages 1-11.
    13. Fontagné, Lionel & Santoni, Gianluca, 2021. "GVCs and the endogenous geography of RTAs," European Economic Review, Elsevier, vol. 132(C).
    14. Haddad, Eduardo, 2012. "Progress on the Development of an Interregional Computable General Equilibrium Model for Lebanon: The Input-Output System," TD NEREUS 1-2012, Núcleo de Economia Regional e Urbana da Universidade de São Paulo (NEREUS).
    15. Aldasoro, Iñaki & Alves, Iván, 2018. "Multiplex interbank networks and systemic importance: An application to European data," Journal of Financial Stability, Elsevier, vol. 35(C), pages 17-37.
    16. Tobias Kronenberg, 2012. "Regional input-output models and the treatment of imports in the European System of Accounts (ESA)," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 32(2), pages 175-191, September.
    17. Hiroyuki Matsuoka, 2017. "Industrial Structure of Prefectures in Japan," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 7(11), pages 440-449, November.
    18. Suder, Gabriele & Liesch, Peter W. & Inomata, Satoshi & Mihailova, Irina & Meng, Bo, 2015. "The evolving geography of production hubs and regional value chains across East Asia: Trade in value-added," Journal of World Business, Elsevier, vol. 50(3), pages 404-416.
    19. Quentin Perrier & Philippe Quirion, 2016. "La transition énergétique est-elle favorable aux branches à fort contenu en emploi ? Une approche input-output pour la France," Working Papers 2016.09, FAERE - French Association of Environmental and Resource Economists.
    20. Doris Hanzl-Weiss & Roman Stöllinger & Robert Stehrer, 2014. "Die Sachgüterproduktion Österreichs," Working Paper Reihe der AK Wien - Materialien zu Wirtschaft und Gesellschaft 133, Kammer für Arbeiter und Angestellte für Wien, Abteilung Wirtschaftswissenschaft und Statistik.
    21. Kronenberg, Tobias, 2010. "Dematerialisation of consumption: a win-win strategy?," MPRA Paper 25704, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.