IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.03442.html
   My bibliography  Save this paper

Sector coupling via hydrogen to lower the cost of energy system decarbonization

Author

Listed:
  • Guannan He
  • Dharik S. Mallapragada
  • Abhishek Bose
  • Clara F. Heuberger
  • Emre Genc{c}er

Abstract

There is growing interest in hydrogen (H$_2$) use for long-duration energy storage in a future electric grid dominated by variable renewable energy (VRE) resources. Modelling the role of H$_2$ as grid-scale energy storage, often referred as "power-to-gas-to-power (P2G2P)" overlooks the cost-sharing and emission benefits from using the deployed H$_2$ production and storage assets to also supply H$_2$ for decarbonizing other end-use sectors where direct electrification may be challenged. Here, we develop a generalized modelling framework for co-optimizing energy infrastructure investment and operation across power and transportation sectors and the supply chains of electricity and H$_2$, while accounting for spatio-temporal variations in energy demand and supply. Applying this sector-coupling framework to the U.S. Northeast under a range of technology cost and carbon price scenarios, we find a greater value of power-to-H$_2$ (P2G) versus P2G2P routes. P2G provides flexible demand response, while the extra cost and efficiency penalties of P2G2P routes make the solution less attractive for grid balancing. The effects of sector-coupling are significant, boosting VRE generation by 12-55% with both increased capacities and reduced curtailments and reducing the total system cost (or levelized costs of energy) by 6-14% under 96% decarbonization scenarios. Both the cost savings and emission reductions from sector coupling increase with H$_2$ demand for other end-uses, more than doubling for a 96% decarbonization scenario as H$_2$ demand quadraples. Moreover, we found that the deployment of carbon capture and storage is more cost-effective in the H$_2$ sector because of the lower cost and higher utilization rate. These findings highlight the importance of using an integrated multi-sector energy system framework with multiple energy vectors in planning energy system decarbonization pathways.

Suggested Citation

  • Guannan He & Dharik S. Mallapragada & Abhishek Bose & Clara F. Heuberger & Emre Genc{c}er, 2021. "Sector coupling via hydrogen to lower the cost of energy system decarbonization," Papers 2103.03442, arXiv.org.
  • Handle: RePEc:arx:papers:2103.03442
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.03442
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McPherson, Madeleine & Johnson, Nils & Strubegger, Manfred, 2018. "The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions," Applied Energy, Elsevier, vol. 216(C), pages 649-661.
    2. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    3. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt7p3500g2, Institute of Transportation Studies, UC Davis.
    4. Welder, Lara & Ryberg, D.Severin & Kotzur, Leander & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2018. "Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany," Energy, Elsevier, vol. 158(C), pages 1130-1149.
    5. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    6. Mallapragada, Dharik S. & Sepulveda, Nestor A. & Jenkins, Jesse D., 2020. "Long-run system value of battery energy storage in future grids with increasing wind and solar generation," Applied Energy, Elsevier, vol. 275(C).
    7. Samsatli, Sheila & Samsatli, Nouri J., 2018. "A multi-objective MILP model for the design and operation of future integrated multi-vector energy networks capturing detailed spatio-temporal dependencies," Applied Energy, Elsevier, vol. 220(C), pages 893-920.
    8. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt1804p4vw, Institute of Transportation Studies, UC Davis.
    9. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    10. Sonja Renssen, 2020. "The hydrogen solution?," Nature Climate Change, Nature, vol. 10(9), pages 799-801, September.
    11. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siyu Zhang & Ning Zhang & Hongcai Dai & Lin Liu & Zhuan Zhou & Qing Shi & Jing Lu, 2023. "Comparison of Different Coupling Modes between the Power System and the Hydrogen System Based on a Power–Hydrogen Coordinated Planning Optimization Model," Energies, MDPI, vol. 16(14), pages 1-18, July.
    2. Maulén, Lucas & Castro, Margarita & Lorca, Álvaro & Negrete-Pincetic, Matías, 2023. "Optimization-based expansion planning for power and hydrogen systems with feedback from a unit commitment model," Applied Energy, Elsevier, vol. 343(C).
    3. Seck, Gondia S. & Hache, Emmanuel & Sabathier, Jerome & Guedes, Fernanda & Reigstad, Gunhild A. & Straus, Julian & Wolfgang, Ove & Ouassou, Jabir A. & Askeland, Magnus & Hjorth, Ida & Skjelbred, Hans , 2022. "Hydrogen and the decarbonization of the energy system in europe in 2050: A detailed model-based analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Mustapha D. Ibrahim & Fatima A. S. Binofai & Maha O. A. Mohamad, 2022. "Transition to Low-Carbon Hydrogen Energy System in the UAE: Sector Efficiency and Hydrogen Energy Production Efficiency Analysis," Energies, MDPI, vol. 15(18), pages 1-19, September.
    5. Shi, Mengshu & Huang, Yuansheng, 2022. "Research on investment planning of power-hydrogen system considering the multi-stakeholder benefit," Renewable Energy, Elsevier, vol. 199(C), pages 1408-1423.
    6. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    7. Guerra, K. & Gutiérrez-Alvarez, R. & Guerra, Omar J. & Haro, P., 2023. "Opportunities for low-carbon generation and storage technologies to decarbonise the future power system," Applied Energy, Elsevier, vol. 336(C).
    8. vom Scheidt, Frederik & Qu, Jingyi & Staudt, Philipp & Mallapragada, Dharik S. & Weinhardt, Christof, 2022. "Integrating hydrogen in single-price electricity systems: The effects of spatial economic signals," Energy Policy, Elsevier, vol. 161(C).
    9. Giuseppe Aiello & Salvatore Quaranta & Rosalinda Inguanta & Antonella Certa & Mario Venticinque, 2024. "A Multi-Criteria Decision-Making Framework for Zero Emission Vehicle Fleet Renewal Considering Lifecycle and Scenario Uncertainty," Energies, MDPI, vol. 17(6), pages 1-19, March.
    10. Martin Kittel & Wolf-Peter Schill, 2024. "Measuring the Dunkelflaute: How (not) to analyze variable renewable energy shortage," Papers 2402.06758, arXiv.org.
    11. Frew, Bethany & Levie, Daniel & Richards, James & Desai, Jal & Ruth, Mark, 2023. "Analysis of multi-output hybrid energy systems interacting with the grid: Application of improved price-taker and price-maker approaches to nuclear-hydrogen systems," Applied Energy, Elsevier, vol. 329(C).
    12. Ives, Matthew & Cesaro, Zac & Bramstoft, Rasmus & Bañares-Alcántara, René, 2023. "Facilitating deep decarbonization via sector coupling of green hydrogen and ammonia," INET Oxford Working Papers 2023-04, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    13. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    2. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    3. Davis, M. & Okunlola, A. & Di Lullo, G. & Giwa, T. & Kumar, A., 2023. "Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Simonas Cerniauskas & Thomas Grube & Aaron Praktiknjo & Detlef Stolten & Martin Robinius, 2019. "Future Hydrogen Markets for Transportation and Industry: The Impact of CO 2 Taxes," Energies, MDPI, vol. 12(24), pages 1-26, December.
    5. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    6. Colbertaldo, P. & Cerniauskas, S. & Grube, T. & Robinius, M. & Stolten, D. & Campanari, S., 2020. "Clean mobility infrastructure and sector integration in long-term energy scenarios: The case of Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Ibrahim, Omar S. & Singlitico, Alessandro & Proskovics, Roberts & McDonagh, Shane & Desmond, Cian & Murphy, Jerry D., 2022. "Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    9. Keiner, Dominik & Thoma, Christian & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Seasonal hydrogen storage for residential on- and off-grid solar photovoltaics prosumer applications: Revolutionary solution or niche market for the energy transition until 2050?," Applied Energy, Elsevier, vol. 340(C).
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Niermann, M. & Timmerberg, S. & Drünert, S. & Kaltschmitt, M., 2021. "Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    13. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    14. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    15. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    16. Markus Reuß & Paris Dimos & Aline Léon & Thomas Grube & Martin Robinius & Detlef Stolten, 2021. "Hydrogen Road Transport Analysis in the Energy System: A Case Study for Germany through 2050," Energies, MDPI, vol. 14(11), pages 1-17, May.
    17. David Franzmann & Heidi Heinrichs & Felix Lippkau & Thushara Addanki & Christoph Winkler & Patrick Buchenberg & Thomas Hamacher & Markus Blesl & Jochen Lin{ss}en & Detlef Stolten, 2023. "Green Hydrogen Cost-Potentials for Global Trade," Papers 2303.00314, arXiv.org, revised May 2023.
    18. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    19. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Jarvis, Sean M. & Samsatli, Sheila, 2018. "Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 85(C), pages 46-68.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.03442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.