IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1371-1379.html
   My bibliography  Save this article

Design and key heating power parameters of a newly-developed household biomass briquette heating boiler

Author

Listed:
  • Wang, Dongji
  • Liu, Liansheng
  • Yuan, Ye
  • Yang, Hua
  • Zhou, Yixing
  • Duan, Ruanze

Abstract

Using biomass briquette fuel for rural household heating is in line with the current Chinese policy and helpful to alleviate the air pollution in winter in northern China. However, the existing biomass briquette boilers have several defects on structure design, fuel feeding, and combustion control, while the design code for the biomass briquette heating boiler has not been proposed thus far. In this study, a newly-developed household biomass briquette heating boiler is designed. Performance test shows that under the optimal operating condition, the emissions of flue dust, NOx, CO, and SO2 are 33.20, 62.48, 426, and 0 mg/m3, respectively; the Ringelman emittance ≤1; the heating power is 12 kW; the thermal efficiency is 84.69%. The tested pollutant emissions and thermal efficiency are in compliance with the limits from the standard. The two key heating power parameters, the grate plan heat release rate and furnace volume heat release rate of this boiler are also determined to provide theoretical basis for the structure design of biomass briquette heating boilers. Results show that the optimal values of these two parameters are 181.98 kW/m2 and 292.04 kW/m3. For the design of household biomass briquette heating boilers, the ranges of 150–210 kW/m2 and 250–330 kW/m3 are considered as the reasonable intervals of these two parameters.

Suggested Citation

  • Wang, Dongji & Liu, Liansheng & Yuan, Ye & Yang, Hua & Zhou, Yixing & Duan, Ruanze, 2020. "Design and key heating power parameters of a newly-developed household biomass briquette heating boiler," Renewable Energy, Elsevier, vol. 147(P1), pages 1371-1379.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1371-1379
    DOI: 10.1016/j.renene.2019.09.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grigonytė-Lopez Rodriguez, Julija & Suhonen, Heikki & Laitinen, Ari & Tissari, Jarkko & Kortelainen, Miika & Tiitta, Petri & Lähde, Anna & Keskinen, Jorma & Jokiniemi, Jorma & Sippula, Olli, 2020. "A novel electrical charging condensing heat exchanger for efficient particle emission reduction in small wood boilers," Renewable Energy, Elsevier, vol. 145(C), pages 521-529.
    2. Chopin, Pierre & Guindé, Loïc & Causeret, François & Bergkvist, Göran & Blazy, Jean-Marc, 2019. "Integrating stakeholder preferences into assessment of scenarios for electricity production from locally produced biomass on a small island," Renewable Energy, Elsevier, vol. 131(C), pages 128-136.
    3. Sedighi, Mohammadreza & Salarian, Hesamoddin, 2017. "A comprehensive review of technical aspects of biomass cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 656-665.
    4. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & Zhou, Wei & Ren, Xiaohan & Zhang, Ruihan, 2018. "Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content," Energy, Elsevier, vol. 158(C), pages 192-203.
    5. Liao, Hua & Tang, Xin & Wei, Yi-Ming, 2016. "Solid fuel use in rural China and its health effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 900-908.
    6. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2018. "Potential of biomass district heating systems in rural areas," Energy, Elsevier, vol. 156(C), pages 132-143.
    7. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    8. Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
    9. Yang, Yang & Sun, Mingman & Zhang, Meng & Zhang, Ke & Wang, Donghai & Lei, Catherine, 2019. "A fundamental research on synchronized torrefaction and pelleting of biomass," Renewable Energy, Elsevier, vol. 142(C), pages 668-676.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Dongji & Liu, Liansheng & Liu, Chunyu & Xie, Jun & Yuan, Ye & Yang, Hua & Duan, Runze, 2021. "A novel supply chain of straw briquette fuel and the optimal way to acquire fixed assets," Energy Policy, Elsevier, vol. 153(C).
    2. Lasek, Janusz A. & Matuszek, Katarzyna & Hrycko, Piotr & Głód, Krzysztof & Li, Yueh-Heng, 2023. "The combustion of torrefied biomass in commercial-scale domestic boilers," Renewable Energy, Elsevier, vol. 216(C).
    3. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Leszek Mieszkalski & Joanna Wichłacz, 2020. "Low Emissions Resulting from Combustion of Forest Biomass in a Small Scale Heating Device," Energies, MDPI, vol. 13(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Liansheng & Wang, Dongji & Gao, Liwei & Duan, Runze, 2020. "Distributed heating/centralized monitoring mode of biomass briquette fuel in Chinese northern rural areas," Renewable Energy, Elsevier, vol. 147(P1), pages 1221-1230.
    2. Wang, Dongji & Liu, Liansheng & Liu, Chunyu & Xie, Jun & Yuan, Ye & Yang, Hua & Duan, Runze, 2021. "A novel supply chain of straw briquette fuel and the optimal way to acquire fixed assets," Energy Policy, Elsevier, vol. 153(C).
    3. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    5. Anna Duczkowska & Ewa Kulińska & Zbigniew Plutecki & Joanna Rut, 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System," Energies, MDPI, vol. 15(12), pages 1-23, June.
    6. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    7. Liao, Hua & Cao, Huai-Shu, 2018. "The pattern of electricity use in residential sector: The experiences from 133 economies," Energy, Elsevier, vol. 145(C), pages 515-525.
    8. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    9. Anna Brunerová & Hynek Roubík & Milan Brožek, 2018. "Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel," Energies, MDPI, vol. 11(9), pages 1-20, August.
    10. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    12. Liu, Ziming & Li, Jia & Rommel, Jens & Feng, Shuyi, 2020. "Health impacts of cooking fuel choice in rural China," Energy Economics, Elsevier, vol. 89(C).
    13. Liu, Ziming & Yu, Lu, 2020. "Stay or Leave? The Role of Air Pollution in Urban Migration Choices," Ecological Economics, Elsevier, vol. 177(C).
    14. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    15. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    16. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    17. Phisamas Hwangdee & Singrun Charee & Watcharin Kheowkrai & Chaiyan Junsiri & Kittipong Laloon, 2022. "Application of the Simplex-Centroid Mixture Design to Biomass Charcoal Powder Formulation Ratio for Biomass Charcoal Briquettes," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    18. Zhang, Lingyue & Li, Hui & Chen, Tianqi & Liao, Hua, 2022. "Health effects of cooking fuel transition: A dynamic perspective," Energy, Elsevier, vol. 251(C).
    19. Wu, Shu, 2022. "Household fuel switching and the elderly's health: Evidence from rural China," Energy, Elsevier, vol. 240(C).
    20. Rodrigo A. Estévez & Valeria Espinoza & Roberto D. Ponce Oliva & Felipe Vásquez-Lavín & Stefan Gelcich, 2021. "Multi-Criteria Decision Analysis for Renewable Energies: Research Trends, Gaps and the Challenge of Improving Participation," Sustainability, MDPI, vol. 13(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1371-1379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.