IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v142y2019icp668-676.html
   My bibliography  Save this article

A fundamental research on synchronized torrefaction and pelleting of biomass

Author

Listed:
  • Yang, Yang
  • Sun, Mingman
  • Zhang, Meng
  • Zhang, Ke
  • Wang, Donghai
  • Lei, Catherine

Abstract

Synchronized torrefaction and pelleting (STP) was developed as a laboratory scale process to produce torrefied pellets with a single biomass material loading. Two fuel upgrading actions (torrefaction and pelleting) happened simultaneously with the assistance of ultrasonic vibration. It was found that STP elevated biomass temperature to above 200 °C in less than one minute and initiated torrefaction while biomass was pelletized in a mold. A feasibility study showed that STP consistently produced torrefied pellets with improved physical, thermochemical, and hygroscopic properties as an upgraded fuel for biomass co-combustion. STP was effective at enhancing the density and durability of torrefied pellets. Elemental analysis of torrefied biomass material showed increased carbon content, indicating higher heating values of torrefied pellets over non-torrefied biomass. Thermogravimetric analysis and Fourier-transform infrared analysis revealed loss of hydrogen and oxygen-rich matters during STP. Finally, greater hydrophobicity of torrefied pellets was exhibited by less water and vapor absorption compared with non-torrefied biomass.

Suggested Citation

  • Yang, Yang & Sun, Mingman & Zhang, Meng & Zhang, Ke & Wang, Donghai & Lei, Catherine, 2019. "A fundamental research on synchronized torrefaction and pelleting of biomass," Renewable Energy, Elsevier, vol. 142(C), pages 668-676.
  • Handle: RePEc:eee:renene:v:142:y:2019:i:c:p:668-676
    DOI: 10.1016/j.renene.2019.04.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119305968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Chen, Wei-Hsin & Kuo, Po-Chih, 2010. "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry," Energy, Elsevier, vol. 35(6), pages 2580-2586.
    3. Li, Hui & Liu, Xinhua & Legros, Robert & Bi, Xiaotao T. & Jim Lim, C. & Sokhansanj, Shahab, 2012. "Pelletization of torrefied sawdust and properties of torrefied pellets," Applied Energy, Elsevier, vol. 93(C), pages 680-685.
    4. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    5. Wen, Jia-Long & Sun, Shao-Long & Yuan, Tong-Qi & Xu, Feng & Sun, Run-Cang, 2014. "Understanding the chemical and structural transformations of lignin macromolecule during torrefaction," Applied Energy, Elsevier, vol. 121(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    3. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.
    5. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    6. Wang, Dongji & Liu, Liansheng & Yuan, Ye & Yang, Hua & Zhou, Yixing & Duan, Ruanze, 2020. "Design and key heating power parameters of a newly-developed household biomass briquette heating boiler," Renewable Energy, Elsevier, vol. 147(P1), pages 1371-1379.
    7. Singh, Satyansh & Chakraborty, Jyoti Prasad & Mondal, Monoj Kumar, 2020. "Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel," Renewable Energy, Elsevier, vol. 153(C), pages 711-724.
    8. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Patel, Anil & Juneja, Ankita & Singh, Rajendra Prasad & Yan, Binghua & Awasthi, Sanjeev Kumar & Jain, Archana & Liu, Tao & Duan, Yumin & Pandey, Ashok & Zh, 2020. "Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Arkadiusz Dyjakon & Tomasz Noszczyk, 2020. "Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones," Energies, MDPI, vol. 13(10), pages 1-19, May.
    10. Sunyong Park & Seok Jun Kim & Kwang Cheol Oh & La Hoon Cho & Min Jun Kim & In Seon Jeong & Chung Geon Lee & Dae Hyun Kim, 2020. "Characteristic Analysis of Torrefied Pellets: Determining Optimal Torrefaction Conditions for Agri-Byproduct," Energies, MDPI, vol. 13(2), pages 1-14, January.
    11. Fu, Jie & Mao, Xiao & Siyal, Asif Ali & Liu, Yang & Ao, Wenya & Liu, Guangqing & Dai, Jianjun, 2021. "Pyrolysis of furfural residue pellets: Physicochemical characteristics of pyrolytic pellets and pyrolysis kinetics," Renewable Energy, Elsevier, vol. 179(C), pages 2136-2146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    2. Bai, Xiaopeng & Wang, Guanghui & Zhu, Zheng & Cai, Chen & Wang, Zhiqin & Wang, Decheng, 2020. "Investigation of improving the yields and qualities of pyrolysis products with combination rod-milled and torrefaction pretreatment," Renewable Energy, Elsevier, vol. 151(C), pages 446-453.
    3. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    4. Rudolfsson, Magnus & Stelte, Wolfgang & Lestander, Torbjörn A., 2015. "Process optimization of combined biomass torrefaction and pelletization for fuel pellet production – A parametric study," Applied Energy, Elsevier, vol. 140(C), pages 378-384.
    5. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Wang, L. & Barta-Rajnai, E. & Skreiberg, Ø. & Khalil, R. & Czégény, Z. & Jakab, E. & Barta, Z. & Grønli, M., 2018. "Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark," Applied Energy, Elsevier, vol. 227(C), pages 137-148.
    7. Rudolfsson, Magnus & Borén, Eleonora & Pommer, Linda & Nordin, Anders & Lestander, Torbjörn A., 2017. "Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass," Applied Energy, Elsevier, vol. 191(C), pages 414-424.
    8. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Johanna Gaitán-Alvarez & Roger Moya & Allen Puente-Urbina & Ana Rodriguez-Zuñiga, 2017. "Physical and Compression Properties of Pellets Manufactured with the Biomass of Five Woody Tropical Species of Costa Rica Torrefied at Different Temperatures and Times," Energies, MDPI, vol. 10(8), pages 1-17, August.
    10. Zhu, Youjian & Yang, Wei & Fan, Jiyuan & Kan, Tao & Zhang, Wennan & Liu, Heng & Cheng, Wei & Yang, Haiping & Wu, Xuehong & Chen, Hanping, 2018. "Effect of sodium carboxymethyl cellulose addition on particulate matter emissions during biomass pellet combustion," Applied Energy, Elsevier, vol. 230(C), pages 925-934.
    11. Madanayake, Buddhike Neminda & Gan, Suyin & Eastwick, Carol & Ng, Hoon Kiat, 2016. "Thermochemical and structural changes in Jatropha curcas seed cake during torrefaction for its use as coal co-firing feedstock," Energy, Elsevier, vol. 100(C), pages 262-272.
    12. Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
    13. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    14. Kambo, Harpreet Singh & Dutta, Animesh, 2014. "Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization," Applied Energy, Elsevier, vol. 135(C), pages 182-191.
    15. Moya, Roger & Rodríguez-Zúñiga, Ana & Puente-Urbina, Allen & Gaitán-Álvarez, Johanna, 2018. "Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica," Energy, Elsevier, vol. 149(C), pages 1-10.
    16. Abdul Waheed & Salman Raza Naqvi & Imtiaz Ali, 2022. "Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products," Energies, MDPI, vol. 15(21), pages 1-20, November.
    17. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis," Energy, Elsevier, vol. 36(11), pages 6451-6460.
    18. Yun, Huimin & Clift, Roland & Bi, Xiaotao, 2020. "Process simulation, techno-economic evaluation and market analysis of supply chains for torrefied wood pellets from British Columbia: Impacts of plant configuration and distance to market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    19. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    20. Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:142:y:2019:i:c:p:668-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.