IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v238y2025ics0960148124019098.html
   My bibliography  Save this article

Spent tea leaves and tea bags - Promising biofuels?

Author

Listed:
  • Jezerska, Lucie
  • Sassmanova, Veronika
  • Prokes, Rostislav
  • Gelnar, Daniel
  • Peikertova, Pavlina

Abstract

The spent tea leaves used after the extraction of liquid from processed tea are insufficiently utilized waste, rich in essential amino acids, polyphenols, alkaloids, and minerals, produced in large quantities, e.g., in tea houses, hospitals, school canteens, etc. Therefore, this study is aimed at characterizing this waste, how it is processed into pellets and how it subsequently increases its energy potential by torrefaction. The influence of the method of tea packaging, i.e., loose tea leaves or tea bags, was also considered. Several types of tea waste were processed using a pilot plant pelletizing press and torrefaction stand. The prepared pellets were characterized by mechanical parameters, such as the pellet durability index, the wettability index, water resistance, hardness, or specific bulk density, and were integrated by FTIR measurements. Furthermore, pellet's energy parameters, such as higher heating value, lower heating value, and elemental analysis, were compared. The results show that non-torrefied pellets have an average combustion heat of 19 kJ kg−1, while torrefied pellets have a value of 9 kJ kg−1 higher. Overall, the study demonstrates that spent tea leaves can be converted into a sustainable source of bioenergy and presents a solution for the treatment of this waste, as well as a renewable energy option.

Suggested Citation

  • Jezerska, Lucie & Sassmanova, Veronika & Prokes, Rostislav & Gelnar, Daniel & Peikertova, Pavlina, 2025. "Spent tea leaves and tea bags - Promising biofuels?," Renewable Energy, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019098
    DOI: 10.1016/j.renene.2024.121841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    2. Jezerska, Lucie & Sassmanova, Veronika & Prokes, Rostislav & Gelnar, Daniel, 2023. "The pelletization and torrefaction of coffee grounds, garden chaff and rapeseed straw," Renewable Energy, Elsevier, vol. 210(C), pages 346-354.
    3. Sun, Yunpeng & Li, Haoning & Andlib, Zubaria & Genie, Mesfin G., 2022. "How do renewable energy and urbanization cause carbon emissions? Evidence from advanced panel estimation techniques," Renewable Energy, Elsevier, vol. 185(C), pages 996-1005.
    4. Saghar Sadaghiani & Fereshteh Mafakheri & Zhi Chen, 2023. "Life Cycle Assessment of Bioenergy Production Using Wood Pellets: A Case Study of Remote Communities in Canada," Energies, MDPI, vol. 16(15), pages 1-14, July.
    5. Kamal Baharin, Nur Syahirah & Tagami-Kanada, Nami & Cherdkeattikul, Supitchaya & Hara, Hirofumi & Ida, Tamio, 2024. "Effects of repetitive production on the mechanical characteristic and chemical structure of green tea bio-coke," Renewable Energy, Elsevier, vol. 222(C).
    6. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    7. He, Chao & Tang, Chunyan & Li, Chuanhao & Yuan, Jihui & Tran, Khanh-Quang & Bach, Quang-Vu & Qiu, Rongliang & Yang, Yanhui, 2018. "Wet torrefaction of biomass for high quality solid fuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 259-271.
    8. Yang, Yang & Sun, Mingman & Zhang, Meng & Zhang, Ke & Wang, Donghai & Lei, Catherine, 2019. "A fundamental research on synchronized torrefaction and pelleting of biomass," Renewable Energy, Elsevier, vol. 142(C), pages 668-676.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts," Renewable Energy, Elsevier, vol. 227(C).
    2. Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into value-added liquid product (5-HMF) and high quality solid fuel (hydrochar) in a nitrogen atmosphere," Renewable Energy, Elsevier, vol. 226(C).
    3. Seraj, Somaye & Azargohar, Ramin & Dalai, Ajay K., 2025. "Dry torrefaction and hydrothermal carbonization of biomass to fuel pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    4. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    6. Chun-Wei Chen & Junxiong Zheng & Tin-Chang Chang & Muhammad Sadiq & Bushra Tufail, 2025. "Green finance policy and heavy pollution enterprises: a supply-chain and signal transmission of green credit policy for the environment—Vietnam perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 2317-2335, January.
    7. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    8. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Guan, Lu & Zhao, Chang, 2024. "Exploring the dual role of financial inclusion and mineral resources in elevating sustainable development," Resources Policy, Elsevier, vol. 90(C).
    10. Chen, Jiamin & Chen, Yuwei, 2024. "Does natural resources rent promote carbon neutrality: The role of digital finance," Resources Policy, Elsevier, vol. 92(C).
    11. Soria-Verdugo, Antonio & Guil-Pedrosa, José Félix & García-Hernando, Néstor & Ghoniem, Ahmed F., 2024. "Evolution of solid residue composition during inert and oxidative biomass torrefaction," Energy, Elsevier, vol. 312(C).
    12. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    13. Wang, Jianxin & Zhu, Guohua & Chang, Tin-Chang, 2024. "Unveiling the relationship between institutional quality, fintech, financial inclusion, human capital development and mineral resource abundance. An Asian perspective," Resources Policy, Elsevier, vol. 89(C).
    14. Jelena Topić Božič & Urška Fric & Ante Čikić & Simon Muhič, 2024. "Life Cycle Assessment of Using Firewood and Wood Pellets in Slovenia as Two Primary Wood-Based Heating Systems and Their Environmental Impact," Sustainability, MDPI, vol. 16(4), pages 1-14, February.
    15. Egor Selivanov & Pavel Cudlín, 2025. "Life cycle assessment of residential heat production from wood pellet combustion in the Northwest region of Russia," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 71(4), pages 182-194.
    16. Chen, Wei-Hsin & Teng, Chen-Hsiang & Chein, Rei-Yu & Nguyen, Thanh-Binh & Dong, Cheng-Di & Kwon, Eilhann E., 2025. "Co-production of hydrogen and biochar from methanol autothermal reforming combining excess heat recovery," Applied Energy, Elsevier, vol. 381(C).
    17. Briongos, J.V. & Taramona, S. & Gómez-Hernández, J. & Mulone, V. & Santana, D., 2021. "Solar and biomass hybridization through hydrothermal carbonization," Renewable Energy, Elsevier, vol. 177(C), pages 268-279.
    18. Wang, Lei & Su, Chi Wei & Liu, Jing & Dong, Yuxing, 2024. "Sustainable development or smoke?: The role of natural resources, renewable energy, and agricultural practices in China," Resources Policy, Elsevier, vol. 88(C).
    19. Lin, Yi-Li & Zheng, Nai-Yun & Lin, Ching-Shi, 2021. "Repurposing Washingtonia filifera petiole and Sterculia foetida follicle waste biomass for renewable energy through torrefaction," Energy, Elsevier, vol. 223(C).
    20. Alessandro Antonio Papa & Andrea Di Carlo & Enrico Bocci & Luca Taglieri & Luca Del Zotto & Alberto Gallifuoco, 2021. "Energy Analysis of an Integrated Plant: Fluidized Bed Steam Gasification of Hydrothermally Treated Biomass Coupled to Solid Oxide Fuel Cells," Energies, MDPI, vol. 14(21), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.