IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics096014812400168x.html
   My bibliography  Save this article

Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects

Author

Listed:
  • Nawaz, Ahmad
  • Razzak, Shaikh Abdur

Abstract

Global energy consumption has increased as a result of a growing population and industrialization, leading to a number of complications such as fossil fuel exhaustion, electrical shortages, and pollution. Due to these challenges, it was necessary to discover and apply abundant renewable energy sources, especially biomass, using thermochemical conversion methods such as co-pyrolysis. Synergistic improvements can be made to fuel and value-added products by using plastic waste and solid biomass feedstock mixtures. The present research provides an indication of earlier investigations, current achievements, and upcoming possibilities in the co-pyrolysis of solid biomass and plastic waste for the generation of superior-quality biofuels. The properties of key plastic waste components are addressed, with an emphasis on the synergistic benefits that may be obtained by co-pyrolyzing them with biomass. A range of state-of-the-art experimental methodologies for the co-pyrolysis study is assessed using different types of reactors. The obstacles and prospects for advancement in the co-pyrolysis of various solid biomass and plastic waste mixes are also highlighted. This critical evaluation indicated that co-pyrolysis of solid biomass with plastic waste is more advantageous than typical biomass pyrolysis independently and it is a simple, effective, and optional method of accomplishing effective waste management, boosting energy security, and lowering reliance on fossil fuels.

Suggested Citation

  • Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s096014812400168x
    DOI: 10.1016/j.renene.2024.120103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400168X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s096014812400168x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.