IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225005493.html
   My bibliography  Save this article

Study on the effect of selective condensation on the distribution of co-pyrolysis products from cotton straw and polyethylene

Author

Listed:
  • Ma, Yakai
  • Huang, Yitao
  • Yang, Yaojun
  • Zhu, Xifeng

Abstract

This study investigated the co-pyrolysis of CT with PE at different weight ratios (1:0, 1:2, 1:1, 2:1, 0:1) using thermogravimetric analysis, pyrolysis-gas chromatography/mass spectrometry, and a vertical fixed fluidized bed. The physical intervention of different condensation temperatures on pyrolysis vapors was examined using selective condensation technology, which aimed to improve the refined condensation and enrichment of high-value-added products. The results showed that the co-pyrolysis changed the rate of weight loss of the blend. In the active pyrolysis stage, the maximum weight loss rate of 0.89 %/°C for CT2PE1 was greater than the maximum weight loss rate of 0.62 %/°C for CT. The co-pyrolysis of CT and PE led to cyclization and aromatization, allowing the hydrocarbons to undergo a series of reactions to increase the relative content of phenols. CT2PE1 had the highest relative phenolic content of 37.74 %. In addition, the high temperature of 343 K condensed the highest content of phenolic compounds in CT2PE1, which was 4.50 %.The coupling effect of co-pyrolysis technology and selective condensation technology increased the recovery rate of detectable phenolic compounds by 163.16 %. This effectively improved the enrichment of high value-added phenolic compounds in bio-oil, and provided an effective technical route for bio-oil purification and quality improvement.

Suggested Citation

  • Ma, Yakai & Huang, Yitao & Yang, Yaojun & Zhu, Xifeng, 2025. "Study on the effect of selective condensation on the distribution of co-pyrolysis products from cotton straw and polyethylene," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225005493
    DOI: 10.1016/j.energy.2025.134907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225005493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chaudhary, Amita & Lakhani, Jay & Dalsaniya, Priyank & Chaudhary, Prins & Trada, Akshit & Shah, Niraj K. & Upadhyay, Darshit S., 2023. "Slow pyrolysis of low-density Poly-Ethylene (LDPE): A batch experiment and thermodynamic analysis," Energy, Elsevier, vol. 263(PB).
    2. Wang, Chu & Qu, Hangchen & Mu, Lin & Chen, Dengyu & Dong, Ming & Wang, Liang, 2024. "Visual liquefaction process of biomass pyrolysis vapors during indirect heat exchange: Experimental description, prediction, and verification," Renewable Energy, Elsevier, vol. 237(PC).
    3. Rahman, Md Hafizur & Bhoi, Prakashbhai R. & Saha, Arpita & Patil, Vivek & Adhikari, Sushil, 2021. "Thermo-catalytic co-pyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid," Energy, Elsevier, vol. 225(C).
    4. Zhu, Liang & Cai, Wei & Li, Jie & Chen, Dengyu & Ma, Zhongqing, 2024. "Highly selective production of light aromatics from co-catalytic fast pyrolysis of pre-deoxygenated biomass and hydrogen-rich polyethylene using a dual-catalyst system," Energy, Elsevier, vol. 296(C).
    5. Wang, Chu & Yuan, Xinhua & Li, Shanshan & Zhu, Xifeng, 2021. "Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation," Renewable Energy, Elsevier, vol. 169(C), pages 1317-1329.
    6. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    7. Liu, Xuan & Burra, Kiran G. & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2020. "On deconvolution for understanding synergistic effects in co-pyrolysis of pinewood and polypropylene," Applied Energy, Elsevier, vol. 279(C).
    8. Jaafar, Yehya & Abdelouahed, Lokmane & El Samrani, Antoine & El Hage, Roland & Taouk, Bechara, 2023. "Co-pyrolysis of plastic polymers and biomass: Effect of beech wood/plastic ratio and temperature on enhanced oil production in a tubular pyrolyzer," Renewable Energy, Elsevier, vol. 218(C).
    9. Berthold, Engamba Esso Samy & Deng, Wei & Zhou, Junbo & Bertrand, Aguenkeu Mefinnya Elie & Xu, Jun & Jiang, Long & Su, Sheng & Hu, Song & Hu, Xun & Wang, Yi & Xiang, Jun, 2023. "Impact of plastic type on synergistic effects during co-pyrolysis of rice husk and plastics," Energy, Elsevier, vol. 281(C).
    10. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    2. Luo, Miaoling & Shao, Shanshan & Cao, Yu & Li, Xiaohua & Wu, Shiliang, 2025. "A study on the characteristics and kinetic of co-catalytic pyrolysis with rape straw and ABS waste plastics," Renewable Energy, Elsevier, vol. 242(C).
    3. Chen, He & Wang, Jiaxing & Rocha, Luiz AO. & Zhang, Houlei & Zhang, Shuping & Zhang, Huiyan, 2024. "Insights into the char-production mechanism during co-pyrolysis of biomass and plastic wastes," Energy, Elsevier, vol. 312(C).
    4. Burra, Kiran Raj G. & Liu, Xuan & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2021. "Quantifying the sources of synergistic effects in co-pyrolysis of pinewood and polystyrene," Applied Energy, Elsevier, vol. 302(C).
    5. Guo, Na & Wang, Zhiwei & Chen, Gaofeng & Zhang, Mengju & Zhu, Huina & Wang, Qun & Guo, Shuaihua & Su, Feihong & You, Zhenxiang & Yang, Shuhua & Du, Zhimin & Liu, Yongzhi & Lei, Tingzhou, 2024. "Co-pyrolysis kinetic characteristics of wheat straw and hydrogen rich plastics based on TG-FTIR and Py-GC/MS," Energy, Elsevier, vol. 312(C).
    6. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Aktas, Fatih & Mavukwana, Athi-enkosi & Burra, Kiran Raj Goud & Gupta, Ashwani K., 2024. "Role of spent FCC catalyst in pyrolysis and CO2-assisted gasification of pinewood," Applied Energy, Elsevier, vol. 366(C).
    8. Hou, Yanmei & Feng, Zixing & He, Yuyu & Gao, Qi & Ni, Liangmeng & Su, Mengfu & Ren, Hao & Liu, Zhijia & Hu, Wanhe, 2022. "Co-pyrolysis characteristics and synergistic interaction of bamboo residues and disposable face mask," Renewable Energy, Elsevier, vol. 194(C), pages 415-425.
    9. Chen, Chunxiang & Fan, Dianzhao & Zhao, Jian & Qi, Qianhao & Huang, Xiaodong & Zeng, Tianyang & Bi, Yingxin, 2022. "Study on microwave-assisted co-pyrolysis and bio-oil of Chlorella vulgaris with high-density polyethylene under activated carbon," Energy, Elsevier, vol. 247(C).
    10. Wang, Chu & Qu, Hangchen & Mu, Lin & Chen, Dengyu & Dong, Ming & Wang, Liang, 2024. "Visual liquefaction process of biomass pyrolysis vapors during indirect heat exchange: Experimental description, prediction, and verification," Renewable Energy, Elsevier, vol. 237(PC).
    11. Kang, Kang & Klinghoffer, Naomi B. & ElGhamrawy, Islam & Berruti, Franco, 2021. "Thermochemical conversion of agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    13. Changheng Li & Qing Huang & Haixiang Zhang & Qingqing Wang & Rixin Xue & Genmao Guo & Jie Hu & Tinghang Li & Junfeng Wang & Shan Hu, 2021. "Characterization of Biochars Produced by Co-Pyrolysis of Hami Melon (Cantaloupes) Straw Mixed with Polypropylene and Their Adsorption Properties of Cadmium," IJERPH, MDPI, vol. 18(21), pages 1-17, October.
    14. Chen, Xiangmeng & Shafizadeh, Alireza & Shahbeik, Hossein & Nadian, Mohammad Hossein & Golvirdizadeh, Milad & Peng, Wanxi & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2025. "Enhanced bio-oil production from biomass catalytic pyrolysis using machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    15. Onwuemezie, Linus & Gohari Darabkhani, Hamidreza, 2024. "Oxy-hydrogen, solar and wind assisted hydrogen (H2) recovery from municipal plastic waste (MPW) and saltwater electrolysis for better environmental systems and ocean cleanup," Energy, Elsevier, vol. 301(C).
    16. He, Yahui & Li, Xiaofu & Meng, Li & Zhang, Wenqi & Wang, Yinfeng & Wang, Lei & Bi, Xiaotao & Zhu, Yuezhao, 2024. "Experimental investigation on high-temperature co-gasification and melting behavior of petrochemical sludge and bituminous coal in CO2 atmosphere," Energy, Elsevier, vol. 303(C).
    17. Wang, Chu & Yuan, Xinhua & Li, Shanshan & Zhu, Xifeng, 2021. "Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation," Renewable Energy, Elsevier, vol. 169(C), pages 1317-1329.
    18. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Peng, Hehuan & Cai, Wei & Huang, Ming & Xia, Sheng & Zhu, Liang & Fang, Xiaolong & Ma, Zhongqing, 2025. "Advancing biomass gasification by the dry and wet torrefaction pretreatment," Energy, Elsevier, vol. 324(C).
    20. Barta-Rajnai, E. & Wang, L. & Sebestyén, Z. & Barta, Z. & Khalil, R. & Skreiberg, Ø. & Grønli, M. & Jakab, E. & Czégény, Z., 2017. "Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce," Applied Energy, Elsevier, vol. 204(C), pages 1043-1054.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225005493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.