IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224010144.html
   My bibliography  Save this article

Highly selective production of light aromatics from co-catalytic fast pyrolysis of pre-deoxygenated biomass and hydrogen-rich polyethylene using a dual-catalyst system

Author

Listed:
  • Zhu, Liang
  • Cai, Wei
  • Li, Jie
  • Chen, Dengyu
  • Ma, Zhongqing

Abstract

Co-catalytic fast pyrolysis of torrefaction deoxygenated pine wood (PW) and high-density polyethylene (HDPE) in dual-catalyst (metal oxidize and zeolite) system is an effective technology to produce renewable bio-aromatics. In this work, the torrefaction deoxygenation pretreatment (TDP) was carried out to remove oxygen element from PW prior to catalytic fast pyrolysis (CFP). 56.90 % oxygen could be removed at TDP temperature of 300 °C, releasing in the oxygen carrier of CO2, CO, H2O, alcohols, acids, phenols, etc. Then, the synergistic effect between the metal oxide and the HZSM-5 in dual-catalyst system was also investigated. Among these metal oxides (Al2O3, MgO, CaO, ZnO, and Fe2O3) and hierarchical HZSM-5, the dual-catalyst of CaO and hierarchical HZSM-5 (treated by 0.2 M NaOH) was the optimal combination. The layout mode between feedstock and dual catalyst was also optimized. The highest yield of aromatics was produced in layout Mode 8, where the CaO was mixed with torrefied PW, but the hierarchical HZSM-5 and HDPE were laid in separated layers. The mixing of CaO and torrefied PW promoted the conversion of the macromolecular oxygenates into micromolecular oxygenates. Then, these small-molecular oxygenates could enter the hierarchical channel of HZSM-5, being converted into aromatics by undergoing the Diels-Alder reaction.

Suggested Citation

  • Zhu, Liang & Cai, Wei & Li, Jie & Chen, Dengyu & Ma, Zhongqing, 2024. "Highly selective production of light aromatics from co-catalytic fast pyrolysis of pre-deoxygenated biomass and hydrogen-rich polyethylene using a dual-catalyst system," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224010144
    DOI: 10.1016/j.energy.2024.131241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224010144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.