IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005743.html
   My bibliography  Save this article

Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts

Author

Listed:
  • Kostyniuk, Andrii
  • Likozar, Blaž

Abstract

Wet torrefaction (WT) proves to be a highly efficient pretreatment method for biomass waste, resulting in the production of hydrochar and valuable liquid products. In this study, a groundbreaking chemocatalytic approach is introduced, employing various zeolite catalysts (H-ZSM-5, H-Beta, H–Y, H-USY, and H-Mordenite) in a batch reactor under a nitrogen atmosphere. This method enables the simultaneous one-pot production of levulinic acid (LA) and/or bio-ethanol during the WT process of wood cellulose pulp residue (WCPR), ultimately yielding high-quality solid fuel. The WT process involves at 220 and 260 °C, H2O/WCPR = 10, and torrefaction time at 15, 30 and 60 min. The study identifies that at 220 °C and 15 min, as the optimal temperature and time, for bio-ethanol production, achieving a selectivity of 59.0 % with the H–Y catalyst, while the highest amount of bio-ethanol (75.6 %) was detected in presence of H-USY zeolite at 260 °C after 60 min. In addition, it was found the formation of relatively high amount of LA (62.0 %) at 220 °C after 60 min but using the H-ZSM-5 catalyst. For the WT + Mordenite sample (220 °C, 60 min), the highest carbon content of 71.5 % is achieved, resulting in the higher heating value (HHV) of 27.3 MJ/kg, an enhancement factor of 1.36, and carbon enrichment of 1.48, with the sequence of element removal during WT prioritized as DO > DH > DC and the weight loss of 68 %. Finally, the reaction mechanism was proposed to elucidate the formation of liquid products after WT of WCPR with participation of zeolite catalysts. The main pathway involving the direct conversion of cellulose into hydroxyacetone, followed by the subsequent generation of ethanol through the C–C cleavage of hydroxyacetone while LA formed via well-known route which includes cellulose hydrolysis to form glucose, conversion to 5-HMF and the subsequent transformation of 5-HMF into LA.

Suggested Citation

  • Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005743
    DOI: 10.1016/j.renene.2024.120509
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.