IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i16p6411-d396718.html
   My bibliography  Save this article

Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass

Author

Listed:
  • Jaime Martín-Pascual

    (Department of Civil Engineering, Campus Fuentenueva, University of Granada, 18071 Granada, Spain)

  • Joaquín Jódar

    (Department of Mathematics, Campus Las Lagunillas, University of Jaén, 23071 Jaén, Spain)

  • Miguel L. Rodríguez

    (Department of Applied Mathematics, Campus Fuentenueva, University of Granada, 18071 Granada, Spain)

  • Montserrat Zamorano

    (Department of Civil Engineering, Campus Fuentenueva, University of Granada, 18071 Granada, Spain)

Abstract

The need for new energy sources and the problems associated with waste in the agroforestry industry are an opportunity for the recovery of this waste. For the use of this agricultural waste as energy, different pretreatments, such as torrefaction, can be carried out. Torrefaction is a thermochemical treatment involving energetic densification of biomass at temperatures ranging from 200 to 300 °C under an inert and anaerobic environment. This study developed a numerical model to evaluate the effect of temperature and residence time of torrefaction on biomass from olive tree waste to determine optimum operative conditions for the process. Four temperatures and four residence times, in the operation range of the process, were tested to determine the weight loss and the higher heating values (HHVs) of the torrefied sample. From these data, a numerical model was developed to infer the complete behavior of the process in the temperature range between 200 and 300 °C and in the residence time range of a few minutes to 2 h. The HHV of the torrefied sample increased at a temperature between 200 and 275 °C. However, from 275 to 300 °C, there was an HHV decrease. The effect of the residence time depended on the torrefaction temperature. At low temperatures, there were no statistically significant differences, although an increase of HHV was detected under 120 min. However, at 250 °C this effect was reversed, and statistically significant differences were not observed between 30 and 120 min. Overall, the increase of temperature in the torrefaction process reduces the residence time needed to achieve the maximum HHV. As a result, the optimum conditions of torrefaction for this biomass were, approximately, 275 °C and 30 min of residence time. This reaction yielded an optimum 5830 cal/g HHV.

Suggested Citation

  • Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6411-:d:396718
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/16/6411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/16/6411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Bach, Quang-Vu & Tran, Khanh-Quang & Skreiberg, Øyvind & Trinh, Thuat T., 2015. "Effects of wet torrefaction on pyrolysis of woody biomass fuels," Energy, Elsevier, vol. 88(C), pages 443-456.
    3. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    4. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass," Energy, Elsevier, vol. 36(2), pages 803-811.
    5. Zamorano, M. & Popov, V. & Rodríguez, M.L. & García-Maraver, A., 2011. "A comparative study of quality properties of pelletized agricultural and forestry lopping residues," Renewable Energy, Elsevier, vol. 36(11), pages 3133-3140.
    6. Park, Sang-Woo & Jang, Cheol-Hyeon & Baek, Kyung-Ryul & Yang, Jae-Kyung, 2012. "Torrefaction and low-temperature carbonization of woody biomass: Evaluation of fuel characteristics of the products," Energy, Elsevier, vol. 45(1), pages 676-685.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mateusz Jackowski & Łukasz Niedźwiecki & Krzysztof Mościcki & Amit Arora & Muhammad Azam Saeed & Krystian Krochmalny & Jakub Pawliczek & Anna Trusek & Magdalena Lech & Jan Skřínský & Jakub Čespiva & J, 2021. "Synergetic Co-Production of Beer Colouring Agent and Solid Fuel from Brewers’ Spent Grain in the Circular Economy Perspective," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    2. Montree Wongsiriwittaya & Teerapat Chompookham & Bopit Bubphachot, 2023. "Improvement of Higher Heating Value and Hygroscopicity Reduction of Torrefied Rice Husk by Torrefaction and Circulating Gas in the System," Sustainability, MDPI, vol. 15(14), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Chen, Yun-Chun & Chen, Wei-Hsin & Lin, Bo-Jhih & Chang, Jo-Shu & Ong, Hwai Chyuan, 2016. "Impact of torrefaction on the composition, structure and reactivity of a microalga residue," Applied Energy, Elsevier, vol. 181(C), pages 110-119.
    3. Wang, L. & Barta-Rajnai, E. & Skreiberg, Ø. & Khalil, R. & Czégény, Z. & Jakab, E. & Barta, Z. & Grønli, M., 2018. "Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark," Applied Energy, Elsevier, vol. 227(C), pages 137-148.
    4. Kartal, Furkan & Özveren, Uğur, 2022. "Prediction of torrefied biomass properties from raw biomass," Renewable Energy, Elsevier, vol. 182(C), pages 578-591.
    5. Wang, Shurong & Dai, Gongxin & Ru, Bin & Zhao, Yuan & Wang, Xiaoliu & Xiao, Gang & Luo, Zhongyang, 2017. "Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose," Energy, Elsevier, vol. 120(C), pages 864-871.
    6. Muhammet Enes Önür & Kamil Ekinci & Mihriban Civan & Mehmet Emin Bilgili & Sema Yurdakul, 2023. "Quality Properties and Torrefaction Characteristics of Pellets: Rose Oil Distillation Solid Waste and Red Pine Sawdust," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    7. Antonios Nazos & Panagiotis Grammelis & Elias Sakellis & Dimitrios Sidiras, 2020. "Acid-Catalyzed Wet Torrefaction for Enhancing the Heating Value of Barley Straw," Energies, MDPI, vol. 13(7), pages 1-16, April.
    8. Dimitrios K. Sidiras & Antonios G. Nazos & Georgios E. Giakoumakis & Dorothea V. Politi, 2020. "Simulating the Effect of Torrefaction on the Heating Value of Barley Straw," Energies, MDPI, vol. 13(3), pages 1-15, February.
    9. Johanna Gaitán-Álvarez & Róger Moya & Allen Puente-Urbina & Ana Rodriguez-Zúñiga, 2018. "Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times," Energies, MDPI, vol. 11(4), pages 1-26, March.
    10. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    12. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    13. Moya, Roger & Rodríguez-Zúñiga, Ana & Puente-Urbina, Allen & Gaitán-Álvarez, Johanna, 2018. "Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica," Energy, Elsevier, vol. 149(C), pages 1-10.
    14. Zhang, Shuping & Su, Yinhai & Xu, Dan & Zhu, Shuguang & Zhang, Houlei & Liu, Xinzhi, 2018. "Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk," Energy, Elsevier, vol. 149(C), pages 804-813.
    15. Ping Wang & Bret H. Howard, 2017. "Impact of Thermal Pretreatment Temperatures on Woody Biomass Chemical Composition, Physical Properties and Microstructure," Energies, MDPI, vol. 11(1), pages 1-20, December.
    16. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    17. Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    18. Shi, Xiaogang & Ronsse, Frederik & Nachenius, Robert & Pieters, Jan G., 2019. "3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 2: Slow pyrolysis for char production," Renewable Energy, Elsevier, vol. 143(C), pages 1477-1487.
    19. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    20. Singh, Rishikesh Kumar & Chakraborty, Jyoti Prasad & Sarkar, Arnab, 2020. "Optimizing the torrefaction of pigeon pea stalk (cajanus cajan) using response surface methodology (RSM) and characterization of solid, liquid and gaseous products," Renewable Energy, Elsevier, vol. 155(C), pages 677-690.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6411-:d:396718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.