IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i10p1059-d81002.html
   My bibliography  Save this article

Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China

Author

Listed:
  • Qiang Wang

    () (School of Economic & Management, China University of Petroleum (Huadong), No. 66 West Changjiang Road, Qingdao 266580, China)

  • Rongrong Li

    () (School of Economic & Management, China University of Petroleum (Huadong), No. 66 West Changjiang Road, Qingdao 266580, China)

  • Rui Jiang

    () (School of Economic & Management, China University of Petroleum (Huadong), No. 66 West Changjiang Road, Qingdao 266580, China)

Abstract

China has overtaken the United States as the world’s largest producer of carbon dioxide, with industrial carbon emissions (ICE) accounting for approximately 65% of the country’s total emissions. Understanding the ICE decoupling patterns and factors influencing the decoupling status is a prerequisite for balancing economic growth and carbon emissions. This paper provides an overview of ICE based on decoupling elasticity and the Tapio decoupling model. Furthermore, the study identifies the factors contributing to ICE changes in China, using the Kaya identity and Log Mean Divisia Index (LMDI) techniques. Based on the effects and contributions of ICE, we close with a number of recommendations. The results revealed a significant upward trend of ICE during the study period 1994 to 2013, with a total amount of 11,147 million tons. Analyzing the decoupling relationship indicates that “weak decoupling” and “expansive decoupling” were the main states during the study period. The decomposition analysis showed that per capita wealth associated with industrial outputs and energy intensity are the main driving force of ICE, while energy intensity of industrial output and energy structure are major determinants for ICE reduction. The largest contributing cumulative effect to ICE is per capita wealth, at 1.23 in 2013. This factor is followed by energy intensity, with a contributing cumulative effect of −0.32. The cumulative effects of energy structure and population are relatively small, at 0.01 and 0.08, respectively.

Suggested Citation

  • Qiang Wang & Rongrong Li & Rui Jiang, 2016. "Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China," Sustainability, MDPI, Open Access Journal, vol. 8(10), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:1059-:d:81002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/10/1059/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/10/1059/
    Download Restriction: no

    References listed on IDEAS

    as
    1. de Bruyn, S. M. & van den Bergh, J. C. J. M. & Opschoor, J. B., 1998. "Economic growth and emissions: reconsidering the empirical basis of environmental Kuznets curves," Ecological Economics, Elsevier, vol. 25(2), pages 161-175, May.
    2. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    3. Li, Wei & Younger, Paul L. & Cheng, Yuanping & Zhang, Baoyong & Zhou, Hongxing & Liu, Qingquan & Dai, Tao & Kong, Shengli & Jin, Kan & Yang, Quanlin, 2015. "Addressing the CO2 emissions of the world's largest coal producer and consumer: Lessons from the Haishiwan Coalfield, China," Energy, Elsevier, vol. 80(C), pages 400-413.
    4. Nuno Carlos Leitão, 2015. "Energy Consumption and Foreign Direct Investment: A Panel Data Analysis for Portugal," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 138-147.
    5. Cosimo Magazzino, 2014. "A Panel VAR Approach of the Relationship among Economic Growth, CO2 Emissions, and Energy Use in the ASEAN-6 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 546-553.
    6. Shahbaz, Muhammad & Loganathan, Nanthakumar & Muzaffar, Ahmed Taneem & Ahmed, Khalid & Ali Jabran, Muhammad, 2016. "How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 83-93.
    7. Shahbaz, Muhammad & Mallick, Hrushikesh & Mahalik, Mantu Kumar & Sadorsky, Perry, 2016. "The role of globalization on the recent evolution of energy demand in India: Implications for sustainable development," Energy Economics, Elsevier, vol. 55(C), pages 52-68.
    8. Weibin Lin & Jin Yang & Bin Chen, 2011. "Temporal and Spatial Analysis of Integrated Energy and Environment Efficiency in China Based on a Green GDP Index," Energies, MDPI, Open Access Journal, vol. 4(9), pages 1-15, September.
    9. Cosimo Magazzino, 2016. "The relationship between real GDP, CO2 emissions, and energy use in the GCC countries: A time series approach," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1152729-115, December.
    10. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    11. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    12. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposing the decoupling of CO2 emissions and economic growth in Brazil," Ecological Economics, Elsevier, vol. 70(8), pages 1459-1469, June.
    13. Wang, Qiang & Chen, Xi, 2015. "Energy policies for managing China’s carbon emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 470-479.
    14. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    15. Tao Wang & Jim Watson, 2008. "China's carbon emissions and international trade: implications for post-2012 policy," Climate Policy, Taylor & Francis Journals, vol. 8(6), pages 577-587, November.
    16. Wang, W.W. & Zhang, M. & Zhou, M., 2011. "Using LMDI method to analyze transport sector CO2 emissions in China," Energy, Elsevier, vol. 36(10), pages 5909-5915.
    17. Scholl, Lynn & Schipper, Lee & Kiang, Nancy, 1996. "CO2 emissions from passenger transport : A comparison of international trends from 1973 to 1992," Energy Policy, Elsevier, vol. 24(1), pages 17-30, January.
    18. Blesl, Markus & Das, Anjana & Fahl, Ulrich & Remme, Uwe, 2007. "Role of energy efficiency standards in reducing CO2 emissions in Germany: An assessment with TIMES," Energy Policy, Elsevier, vol. 35(2), pages 772-785, February.
    19. Diakoulaki, D. & Mandaraka, M., 2007. "Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector," Energy Economics, Elsevier, vol. 29(4), pages 636-664, July.
    20. Wang, Qiang & Li, Rongrong, 2015. "Cheaper oil: A turning point in Paris climate talk?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1186-1192.
    21. Shahbaz, Muhammad & Ozturk, Ilhan & Afza, Talat & Ali, Amjad, 2013. "Revisiting the environmental Kuznets curve in a global economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 494-502.
    22. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
    23. Wang, Qiang & Chen, Xi & Yi-chong, Xu, 2013. "Accident like the Fukushima unlikely in a country with effective nuclear regulation: Literature review and proposed guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 126-146.
    24. Wang, Qiang & Li, Rongrong, 2016. "Sino-Venezuelan oil-for-loan deal – the Chinese strategic gamble?#," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 817-822.
    25. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    26. Kofi Adom, Philip & Bekoe, William & Amuakwa-Mensah, Franklin & Mensah, Justice Tei & Botchway, Ebo, 2012. "Carbon dioxide emissions, economic growth, industrial structure, and technical efficiency: Empirical evidence from Ghana, Senegal, and Morocco on the causal dynamics," Energy, Elsevier, vol. 47(1), pages 314-325.
    27. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    28. Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
    29. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    30. Nuno Carlos Leitão, 2014. "Economic Growth, Carbon Dioxide Emissions, Renewable Energy and Globalization," International Journal of Energy Economics and Policy, Econjournals, vol. 4(3), pages 391-399.
    31. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    32. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    33. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    34. Zhao, Min & Tan, Lirong & Zhang, Weiguo & Ji, Minhe & Liu, Yuan & Yu, Lizhong, 2010. "Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method," Energy, Elsevier, vol. 35(6), pages 2505-2510.
    35. Wood, Richard & Lenzen, Manfred, 2006. "Zero-value problems of the logarithmic mean divisia index decomposition method," Energy Policy, Elsevier, vol. 34(12), pages 1326-1331, August.
    36. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, Open Access Journal, vol. 9(5), pages 1-18, May.
    2. Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
    3. Rui Jiang & Yulin Zhou & Rongrong Li, 2018. "Moving to a Low-Carbon Economy in China: Decoupling and Decomposition Analysis of Emission and Economy from a Sector Perspective," Sustainability, MDPI, Open Access Journal, vol. 10(4), pages 1-12, March.
    4. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, Open Access Journal, vol. 8(9), pages 1-16, August.
    5. Jiefang Dong & Chun Deng & Rongrong Li & Jieyu Huang, 2016. "Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models," Sustainability, MDPI, Open Access Journal, vol. 9(1), pages 1-15, December.
    6. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, Open Access Journal, vol. 9(9), pages 1-17, August.
    7. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    8. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    9. Min Su & Rui Jiang & Rongrong Li, 2017. "Investigating Low-Carbon Agriculture: Case Study of China’s Henan Province," Sustainability, MDPI, Open Access Journal, vol. 9(12), pages 1-14, December.
    10. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    11. Xiaoping Zhu & Rongrong Li, 2017. "An Analysis of Decoupling and Influencing Factors of Carbon Emissions from the Transportation Sector in the Beijing-Tianjin-Hebei Area, China," Sustainability, MDPI, Open Access Journal, vol. 9(5), pages 1-19, April.
    12. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, Open Access Journal, vol. 10(9), pages 1-18, September.
    13. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    14. Wei Li & Shuang Sun & Hao Li, 2015. "Decomposing the decoupling relationship between energy-related CO 2 emissions and economic growth in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 977-997, November.
    15. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    16. Shasha Wang & Rongrong Li, 2018. "Toward the Coordinated Sustainable Development of Urban Water Resource Use and Economic Growth: An Empirical Analysis of Tianjin City, China," Sustainability, MDPI, Open Access Journal, vol. 10(5), pages 1-13, April.
    17. Ren, Shenggang & Hu, Zhen, 2012. "Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry," Energy Policy, Elsevier, vol. 43(C), pages 407-414.
    18. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2013. "Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010," Energy, Elsevier, vol. 59(C), pages 743-753.
    19. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, Open Access Journal, vol. 8(6), pages 1-22, June.
    20. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, Open Access Journal, vol. 9(6), pages 1-13, May.

    More about this item

    Keywords

    industrial carbon emissions (ICE); decomposition analysis; decoupling analysis; LMDI (Log Mean Divisia Index);
    All these keywords.

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:1059-:d:81002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.