IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225004931.html
   My bibliography  Save this article

Heterogeneity grey model and its prediction of energy consumption under the shared socioeconomic pathways

Author

Listed:
  • Zhao, Kai
  • Wu, Lifeng

Abstract

The same accumulation operators limit the capacity of grey prediction algorithm in unsmoothed time series. Based on the principle of heterogeneity, a grey model can be affected by changes in multiple different accumulation operators. Therefore, the study proposed a grey model with heterogeneity accumulation operators to predict the future energy consumption in Chinese provinces under the shared socioeconomic pathways. The future energy consumptions of China’s 30 provinces are predicted by the proposed novel model under the shared socioeconomic pathways. The predicted results show that the regional competition path of the shared socioeconomic pathway three is the optimal development path for carbon peak areas with high and low maturity from 2022 to 2030. Most provinces in the middle maturity region will maintain the optimal development path of the shared socioeconomic pathway five, which is mainly based on fossil fuels. To ensure the achievement of the carbon peak goal of low energy consumption, it is recommended that the development path of provinces in middle maturity regions should transition from the shared socioeconomic pathway five to the three before 2030. The predicted results of the novel model can provide reference for relevant government departments to help formulate energy policies and carbon peak targets.

Suggested Citation

  • Zhao, Kai & Wu, Lifeng, 2025. "Heterogeneity grey model and its prediction of energy consumption under the shared socioeconomic pathways," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225004931
    DOI: 10.1016/j.energy.2025.134851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Biying Yu & Zihao Zhao & Yi-Ming Wei & Lan-Cui Liu & Qingyu Zhao & Shuo Xu & Jia-Ning Kang & Hua Liao, 2023. "Approaching national climate targets in China considering the challenge of regional inequality," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Jarmo S. Kikstra & Adriano Vinca & Francesco Lovat & Benigna Boza-Kiss & Bas Ruijven & Charlie Wilson & Joeri Rogelj & Behnam Zakeri & Oliver Fricko & Keywan Riahi, 2021. "Climate mitigation scenarios with persistent COVID-19-related energy demand changes," Nature Energy, Nature, vol. 6(12), pages 1114-1123, December.
    4. Zhike Lv & Ting Xu, 2019. "Trade openness, urbanization and CO emissions: Dynamic panel data analysis of middle-income countries," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 28(3), pages 317-330, April.
    5. Xiong, Pingping & Li, Kailing & Shu, Hui & Wang, Junjie, 2021. "Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model," Energy, Elsevier, vol. 237(C).
    6. Rong Tang & Jing Zhao & Yifan Liu & Xin Huang & Yanxu Zhang & Derong Zhou & Aijun Ding & Chris P. Nielsen & Haikun Wang, 2022. "Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Shu Zhang & Wenying Chen, 2022. "Assessing the energy transition in China towards carbon neutrality with a probabilistic framework," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
    9. Magacho, Guilherme & Espagne, Etienne & Godin, Antoine & Mantes, Achilleas & Yilmaz, Devrim, 2023. "Macroeconomic exposure of developing economies to low-carbon transition," World Development, Elsevier, vol. 167(C).
    10. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    11. Carfora, Alfonso & Scandurra, Giuseppe & Thomas, Antonio, 2022. "Forecasting the COVID-19 effects on energy poverty across EU member states," Energy Policy, Elsevier, vol. 161(C).
    12. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "A trigonometric grey prediction approach to forecasting electricity demand," Energy, Elsevier, vol. 31(14), pages 2839-2847.
    13. Xie, Wanli & Wu, Wen-Ze & Liu, Chong & Zhao, Jingjie, 2020. "Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction," Energy, Elsevier, vol. 202(C).
    14. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    15. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    16. Zeng, Bo & Duan, Huiming & Bai, Yun & Meng, Wei, 2018. "Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator," Energy, Elsevier, vol. 151(C), pages 238-249.
    17. Chang, Lulu & Fang, Senhui, 2024. "Climate actions and corporate carbon emissions along the supply chain," Economics Letters, Elsevier, vol. 235(C).
    18. de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    2. Luo, Xilin & Duan, Huiming & He, Leiyuhang, 2020. "A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy," Energy, Elsevier, vol. 205(C).
    3. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Xiong, Pingping & Li, Kailing & Shu, Hui & Wang, Junjie, 2021. "Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model," Energy, Elsevier, vol. 237(C).
    5. Liu, Yitong & Xue, Dingyu & Yang, Yang, 2021. "Two types of conformable fractional grey interval models and their applications in regional electricity consumption prediction," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Yijue Sun & Fenglin Zhang, 2022. "Grey Multivariable Prediction Model of Energy Consumption with Different Fractional Orders," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    7. Xie, Wanli & Wu, Wen-Ze & Liu, Chong & Zhao, Jingjie, 2020. "Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction," Energy, Elsevier, vol. 202(C).
    8. Meixia Wang, 2024. "Predicting China’s Energy Consumption and CO 2 Emissions by Employing a Novel Grey Model," Energies, MDPI, vol. 17(21), pages 1-25, October.
    9. Li, Nu & Wang, Jianliang & Wu, Lifeng & Bentley, Yongmei, 2021. "Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization," Energy, Elsevier, vol. 215(PA).
    10. Wang, Yong & Yang, Zhongsen & Zhou, Ying & Liu, Hao & Yang, Rui & Sun, Lang & Sapnken, Flavian Emmanuel & Narayanan, Govindasami, 2025. "A novel structure adaptive new information priority grey Bernoulli model and its application in China's renewable energy production," Renewable Energy, Elsevier, vol. 239(C).
    11. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    12. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    13. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    14. Tan, Xianchun & Cai, Xiaoli & Cheng, Yonglong & Yan, Hongshuo, 2024. "How to control China's total amount of carbon emissions? An analysis of provincial allowance demands," Energy, Elsevier, vol. 303(C).
    15. Gu, Haolei & Wu, Lifeng, 2024. "Pulse fractional grey model application in forecasting global carbon emission," Applied Energy, Elsevier, vol. 358(C).
    16. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
    17. Wang, Zheng-Xin & Li, Dan-Dan & Zheng, Hong-Hao, 2020. "Model comparison of GM(1,1) and DGM(1,1) based on Monte-Carlo simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    18. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2021. "Point and interval forecasting of electricity supply via pruned ensembles," Energy, Elsevier, vol. 232(C).
    19. Bo Zeng & Shuliang Li & Wei Meng & Dehai Zhang, 2019. "An improved gray prediction model for China’s beef consumption forecasting," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-18, September.
    20. Yang, Zhikai & Liu, Pan & Xia, Qian & Li, He & Cheng, Qian & Cheng, Lei, 2024. "Operating rules for hydro-photovoltaic systems: A variance-based sensitivity analysis," Applied Energy, Elsevier, vol. 372(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225004931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.