IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics0360544223006692.html
   My bibliography  Save this article

Investigation of the enhanced oil recovery mechanism of CO2 synergistically with nanofluid in tight glutenite

Author

Listed:
  • Xu, Liang
  • Li, Qi
  • Myers, Matthew
  • Cao, Xiaomin

Abstract

Huff-n-puff methods using nanofluid and/or CO2 are most promising methods for enhancing oil recovery in the Mahu Oilfield, Xinjiang, China. Six tight glutenite reservoir samples were conducted the huff-n-puff experiment using different displacement fluids (i.e. D2O, supercritical CO2 and nanofluid) following saturation with oil. The results of T2 NMR spectra of the samples show that D2O can readily enter the larger pores stripping the oil with smaller pores remaining relatively untouched. Furthermore, the oil recovery was initially fast before quickly tapering with the final average oil recovery over samples using D2O huff-n-puff alone being only 14.89%. However, CO2 could effectively enter both small and large pores with the oil recovery efficiency from small pores being greater than 20% and from the large pores being even higher with the final average recovery over two samples using CO2 huff-n-puff alone being 40.44%. Relative to D2O alone, the nanofluid improved the oil recovery in small pores by more than 10%. There appears to be a synergistic effect combining CO2 and nanofluid huff-n-puff; both CO2 followed by nanofluid huff-n-puff or nanofluid followed by CO2 huff-n-puff achieved similar final recoveries close to 50% of the overall oil.

Suggested Citation

  • Xu, Liang & Li, Qi & Myers, Matthew & Cao, Xiaomin, 2023. "Investigation of the enhanced oil recovery mechanism of CO2 synergistically with nanofluid in tight glutenite," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006692
    DOI: 10.1016/j.energy.2023.127275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223006692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Xunzhang & Wang, Lining & Dai, Jiaquan & Zhang, Qi & Peng, Tianduo & Chen, Wenying, 2020. "Analysis of China’s oil and gas consumption under different scenarios toward 2050: An integrated modeling," Energy, Elsevier, vol. 195(C).
    2. Yi-Ming Wei & Jia-Ning Kang & Lan-Cui Liu & Qi Li & Peng-Tao Wang & Juan-Juan Hou & Qiao-Mei Liang & Hua Liao & Shi-Feng Huang & Biying Yu, 2021. "A proposed global layout of carbon capture and storage in line with a 2 °C climate target," Nature Climate Change, Nature, vol. 11(2), pages 112-118, February.
    3. Ning Wei & Magdalena Gill & Dustin Crandall & Dustin McIntyre & Yan Wang & Kathy Bruner & Xiaochun Li & Grant Bromhal, 2014. "CO 2 flooding properties of Liujiagou sandstone: influence of sub‐core scale structure heterogeneity," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(3), pages 400-418, June.
    4. Baocheng Wu & Xinfang Ma & Jianmin Li & Gang Tian & Dong Xiong & Yushi Zou & Shicheng Zhang, 2022. "Numerical Simulation of Fracture Propagation of Multi-Cluster Perforation and Fracturing in Horizontal Wells: A Case Study of Mahu Oilfield," Energies, MDPI, vol. 15(15), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Jianguang & Zhang, Dong & Zhang, Xin & Zhao, Xiaoqing & Zhou, Runnan, 2023. "Experimental study on water flooding mechanism in low permeability oil reservoirs based on nuclear magnetic resonance technology," Energy, Elsevier, vol. 278(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Pengfei Lv & Yu Liu & Junlin Chen & Lanlan Jiang & Bohao Wu & Shuyang Liu & Yongchen Song, 2017. "Pore†scale investigation of effects of heterogeneity on CO2 geological storage using stratified sand packs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(6), pages 972-987, December.
    3. Ren, Bo & Trevisan, Luca, 2020. "Characterization of local capillary trap clusters in storage aquifers," Energy, Elsevier, vol. 193(C).
    4. Masood S. Alivand & Omid Mazaheri & Yue Wu & Ali Zavabeti & Andrew J. Christofferson & Nastaran Meftahi & Salvy P. Russo & Geoffrey W. Stevens & Colin A. Scholes & Kathryn A. Mumford, 2022. "Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Changwan Gu & Jingjing Xie & Xiaoyu Li & Xu Gao, 2023. "Levelized Cost Analysis for Blast Furnace CO 2 Capture, Utilization, and Storage Retrofit in China’s Blast Furnace–Basic Oxygen Furnace Steel Plants," Energies, MDPI, vol. 16(23), pages 1-20, November.
    6. Pan, Xunzhang & Chen, Wenying & Zhou, Sheng & Wang, Lining & Dai, Jiaquan & Zhang, Qi & Zheng, Xinzhu & Wang, Hailin, 2020. "Implications of near-term mitigation on China's long-term energy transitions for aligning with the Paris goals," Energy Economics, Elsevier, vol. 90(C).
    7. Jing, Jing & Yang, Yanlin & Cheng, Jianmei & Ding, Zhaojing & Wang, Dandan & Jing, Xianwen, 2023. "Analysis of the effect of formation dip angle and injection pressure on the injectivity and migration of CO2 during storage," Energy, Elsevier, vol. 280(C).
    8. Andrew K. Chu & Sally M. Benson & Gege Wen, 2022. "Deep-Learning-Based Flow Prediction for CO 2 Storage in Shale–Sandstone Formations," Energies, MDPI, vol. 16(1), pages 1-21, December.
    9. Liu, Haiying & Pata, Ugur Korkut & Zafar, Muhammad Wasif & Kartal, Mustafa Tevfik & Karlilar, Selin & Caglar, Abdullah Emre, 2023. "Do oil and natural gas prices affect carbon efficiency? Daily evidence from China by wavelet transform-based approaches," Resources Policy, Elsevier, vol. 85(PB).
    10. Bing Bai & Xiaochun Li & Haiqing Wu & Yongsheng Wang & Mingze Liu, 2017. "A methodology for designing maximum allowable wellhead pressure for CO 2 injection: application to the Shenhua CCS demonstration project, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 158-181, February.
    11. Ikonnikova, Svetlana A. & Scanlon, Bridget R. & Berdysheva, Sofia A., 2023. "A global energy system perspective on hydrogen Trade: A framework for the market color and the size analysis," Applied Energy, Elsevier, vol. 330(PA).
    12. Pengfei Lv & Yu Liu & Lanlan Jiang & Yongchen Song & Bohao Wu & Jiafei Zhao & Yi Zhang, 2016. "Experimental determination of wettability and heterogeneity effect on CO 2 distribution in porous media," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(3), pages 401-415, June.
    13. Zhanpeng Zheng & Qingsong Ma & Pei Hu & Yongchen Song & Dayong Wang, 2020. "Uncertainty and sensitivity analysis of relative permeability curves for the numerical simulation of CO2 core flooding," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 519-530, June.
    14. Ying Xie & Jie Wu & Hannian Zhi & Muhammad Riaz & Liangpeng Wu, 2023. "A Study on the Evolution of Competition in China’s Auto Market Considering Market Capacity Constraints and a Game Payoff Matrix: Based on the Dual Credit Policy," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    15. Xie, Minghua & Wei, Xiaonan & Chen, Chuanglian & Sun, Chuanwang, 2022. "China's natural gas production peak and energy return on investment (EROI): From the perspective of energy security," Energy Policy, Elsevier, vol. 164(C).
    16. Muhammad Hammad Rasool & Maqsood Ahmad & Muhammad Ayoub, 2023. "Selecting Geological Formations for CO 2 Storage: A Comparative Rating System," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
    17. Wang, Kai-Hua & Su, Chi-Wei & Umar, Muhammad, 2021. "Geopolitical risk and crude oil security: A Chinese perspective," Energy, Elsevier, vol. 219(C).
    18. Wei, Zhaohao & Chai, Jian & Dong, Jichang & Lu, Quanying, 2022. "Understanding the linkage-dependence structure between oil and gas markets: A new perspective," Energy, Elsevier, vol. 257(C).
    19. Qiu, Shuo & Lei, Tian & Wu, Jiangtao & Bi, Shengshan, 2021. "Energy demand and supply planning of China through 2060," Energy, Elsevier, vol. 234(C).
    20. He, Jianjian & Yang, Yi & Liao, Zhongju & Xu, Anqi & Fang, Kai, 2022. "Linking SDG 7 to assess the renewable energy footprint of nations by 2030," Applied Energy, Elsevier, vol. 317(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.