IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7508-d1138903.html
   My bibliography  Save this article

Predicting the Potential of China’s Geothermal Energy in Industrial Development and Carbon Emission Reduction

Author

Listed:
  • Honglei Shi

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
    Technology Innovation Center of Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China)

  • Guiling Wang

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
    Technology Innovation Center of Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China)

  • Wei Zhang

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
    Technology Innovation Center of Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China)

  • Feng Ma

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
    Technology Innovation Center of Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China)

  • Wenjing Lin

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
    Technology Innovation Center of Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China)

  • Menglei Ji

    (Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
    Technology Innovation Center of Geothermal & Hot Dry Rock Exploration and Development, Ministry of Natural Resources, Shijiazhuang 050061, China)

Abstract

The goal of carbon peaking and carbon neutrality requires major systemic changes in the energy supply sector. As one of the major non-carbon-based energy sources, geothermal energy is characterized by large reserves, stability, and reliability. This paper summarizes the current situation of geothermal resource endowment and industrial development in China. Based on this, a system dynamics model of geothermal industrialization is established, and the potential of geothermal industrialization and carbon emission reduction in China is predicted. The prediction results show that the growth rate of geothermal heating and cooling areas in the next 40 years will follow a trend of acceleration followed by deceleration. China’s geothermal energy heating and cooling area will reach 11.32–14.68 billion m 2 by 2060, an increase of about 9–12 times compared to 2020. The proportion of geothermal heating and cooling area to the total building area in China will reach 13.77–17.85%. The installed capacity of geothermal power generation will reach 14,452.80–20,963.20 MW by 2060 under the scenario with electricity subsidies. The proportion of geothermal energy in China’s primary energy consumption structure will reach 3.67–5.64%. The annual carbon emission reduction potential of the geothermal industry will reach 436–632 million tons, equivalent to 4.41–6.39% of China’s carbon emissions in 2020. The results of this study can provide a reference for the healthy and high-quality development of China’s geothermal industry and help to achieve carbon peaking and carbon neutrality goals.

Suggested Citation

  • Honglei Shi & Guiling Wang & Wei Zhang & Feng Ma & Wenjing Lin & Menglei Ji, 2023. "Predicting the Potential of China’s Geothermal Energy in Industrial Development and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7508-:d:1138903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dalla Longa, Francesco & Nogueira, Larissa P. & Limberger, Jon & Wees, Jan-Diederik van & van der Zwaan, Bob, 2020. "Scenarios for geothermal energy deployment in Europe," Energy, Elsevier, vol. 206(C).
    2. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    3. Song Han & Changqing Lin & Baosheng Zhang & Arash Farnoosh, 2019. "Projections and Recommendations for Energy Structure and Industrial Structure Development in China through 2030: A System Dynamics Model," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    4. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    5. Yuanyuan He & Luxin Wan & Manli Zhang & Huijuan Zhao, 2022. "Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    6. Hongxia Sun & Yao Wan & Huirong Lv, 2020. "System Dynamics Model for the Evolutionary Behaviour of Government Enterprises and Consumers in China’s New Energy Vehicle Market," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    7. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    8. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    9. Laimon, Mohamd & Mai, Thanh & Goh, Steven & Yusaf, Talal, 2022. "System dynamics modelling to assess the impact of renewable energy systems and energy efficiency on the performance of the energy sector," Renewable Energy, Elsevier, vol. 193(C), pages 1041-1048.
    10. Haiyang Jiang & Liangliang Guo & Fengxin Kang & Fugang Wang & Yanling Cao & Zhe Sun & Meng Shi, 2023. "Geothermal Characteristics and Productivity Potential of a Super-Thick Shallow Granite-Type Enhanced Geothermal System: A Case Study in Wendeng Geothermal Field, China," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    11. Song Han & Changqing Lin & Baosheng Zhang & Arash Farnoosh, 2019. "Projections and Recommendations for Energy Structure and Industrial Structure Development in China through 2030: A System Dynamics Model," Post-Print hal-02408957, HAL.
    12. Alsaleh, Mohd & Yang, Zhengyong & Chen, Tinggui & Wang, Xiaohui & Abdul-Rahim, Abdul Samad & Mahmood, Haider, 2023. "Moving toward environmental sustainability: Assessing the influence of geothermal power on carbon dioxide emissions," Renewable Energy, Elsevier, vol. 202(C), pages 880-893.
    13. Wu, Chenyu & Gu, Wei & Luo, Enbo & Chen, Xi & Lu, Hai & Yi, Zhongkai, 2023. "An economic cybernetic model for electricity market operation coupled with physical system dynamics," Applied Energy, Elsevier, vol. 335(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yibo Wang & Lijuan Wang & Yang Bai & Zhuting Wang & Jie Hu & Di Hu & Yaqi Wang & Shengbiao Hu, 2021. "Assessment of Geothermal Resources in the North Jiangsu Basin, East China, Using Monte Carlo Simulation," Energies, MDPI, vol. 14(2), pages 1-17, January.
    2. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Wentao Lu & Zhenghui Fu & Yang Zhang & Yuxuan Qiao & Lei Yu & Yi Liu, 2021. "Integrated Planning for Regional Development Planning with Low Carbon Development Constraint under Uncertainty: A Case Study of Qingpu District, Shanghai," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    4. Ijaz Ahmed & Haifei Liu & Rujun Chen & Jawad Ahmad & Shahid Ali Shah & Shah Fahad & Osama Abdul Rahim & Farid Ullah & Li Rui, 2024. "Geothermal Resource Exploration in Reshi Town by Integrated Geophysical Methods," Energies, MDPI, vol. 17(4), pages 1-20, February.
    5. Kassim, Fatima & Isik, Abdurrahman, 2020. "The link between energy consumption and economic growth: Evidence from transition economies (1985-2017)," MPRA Paper 101601, University Library of Munich, Germany.
    6. Wang, Zengli & Zhou, Hongyang & Hao, Muming & Wang, Jun & Geng, Maofei, 2022. "Thermodynamic analysis and comparative investigation of a novel total flow and Kalina cycle coupled system for fluctuating geothermal energy utilization," Energy, Elsevier, vol. 260(C).
    7. Miguel Angel Marazuela & Alejandro García-Gil, 2022. "Frontier Research of Engineering: Geothermal Energy Utilization and Groundwater Heat Pump Systems," Sustainability, MDPI, vol. 14(21), pages 1-3, October.
    8. Dave Mangindaan & Emil Robert Kaburuan & Bayu Meindrawan, 2022. "Black Soldier Fly Larvae ( Hermetia illucens ) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    9. van der Zwaan, Bob & Lamboo, Sam & Dalla Longa, Francesco, 2021. "Timmermans’ dream: An electricity and hydrogen partnership between Europe and North Africa," Energy Policy, Elsevier, vol. 159(C).
    10. Huang, Shuai & Lin, Duotong & Dong, Jiankai & Li, Ji, 2025. "Effects of building load characteristics on heating performance of the medium-deep U-type borehole heat exchanger coupled heat pumps: A coupled dynamic simulation," Applied Energy, Elsevier, vol. 377(PA).
    11. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    12. Li, Shuguang & Leng, Yuchi & Chaturvedi, Rishabh & Dutta, Ashit Kumar & Abdullaeva, Barno Sayfutdinovna & Fouad, Yasser, 2024. "Sustainable freshwater/energy supply through geothermal-centered layout tailored with humidification-dehumidification desalination unit; Optimized by regression machine learning techniques," Energy, Elsevier, vol. 303(C).
    13. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    14. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    15. Jin, Tao & Jiang, Yulian & Liu, Xingwen, 2023. "Evolutionary game analysis of the impact of dynamic dual credit policy on new energy vehicles after subsidy cancellation," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    16. Shu-Hong Wang & Ma-Lin Song & Tao Yu, 2019. "Hidden Carbon Emissions, Industrial Clusters, and Structure Optimization in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1319-1342, December.
    17. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    18. Maruccia, Ylenia & Solazzo, Gianluca & Del Vecchio, Pasquale & Passiante, Giuseppina, 2020. "Evidence from Network Analysis application to Innovation Systems and Quintuple Helix," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    19. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    20. Zhang, Jiansong & Liu, Yongsheng & Lv, Jianguo & Yang, Gansheng & Xia, Jianxin, 2024. "Comparative investigation of heat extraction performance in 3D self-affine rough single fractures using CO2,N2O and H2O as heat transfer fluid," Renewable Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7508-:d:1138903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.