IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3255-d517742.html
   My bibliography  Save this article

Thermo-Hydraulic Performance of U-Tube Borehole Heat Exchanger with Different Cross-Sections

Author

Listed:
  • Aizhao Zhou

    (School of Civil and Architecture Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Xianwen Huang

    (School of Civil and Architecture Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
    School of Architecture and Civil Engineering, Anhui University of Science and Technology, Huainan 232000, China)

  • Wei Wang

    (School of Civil Engineering, Shaoxing University, Shaoxing 312000, China)

  • Pengming Jiang

    (School of Civil and Architecture Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Xinwei Li

    (School of Architecture and Civil Engineering, Anhui University of Science and Technology, Huainan 232000, China)

Abstract

For reducing the initial GSHP investment, the heat transfer efficiency of the borehole heat exchange (BHE) system can be enhanced to reduce the number or depth of drilling. This paper proposes a novel and simple BHE design by changing the cross-sectional shape of the U-tube to increase the heat transfer efficiency of BHEs. Specifically, in this study, we (1) verified the reliability of the three-dimensional numerical model based on the thermal response test (TRT) and (2) compared the inlet and outlet temperatures of the different U-tubes at 48 h under the premise of constant leg distance and fluid area. Referent to the circular tube, the increases in the heat exchange efficiencies of the curved oval tube, flat oval tube, semicircle tube, and sector tube were 13.0%, 19.1%, 9.4%, and 14.8%, respectively. (3) The heat flux heterogeneity of the tubes on the inlet and outlet sides of the BHE, in decreasing order, is flat oval, semicircle, curved oval, sector, and circle shapes. (4) The temperature heterogeneity of the borehole wall in the BHE in decreasing order is circle, sector, curved oval, flat oval, and semicircle shapes. (5) Under the premise of maximum leg distance, referent to the heat resistance of the tube with a circle shape at 48 h, the heat exchange efficiency of the curved oval, flat oval, semicircle, and sector tubes increased 12.6%, 17.7%, 10.3%, and 7.8%, respectively. (6) We found that the adjustments of the leg distance and the tube shape affect the heat resistance by about 25% and 12%, respectively. (7) The flat-oval-shaped tube at the maximum leg distance was found to be the best tube design for BHEs.

Suggested Citation

  • Aizhao Zhou & Xianwen Huang & Wei Wang & Pengming Jiang & Xinwei Li, 2021. "Thermo-Hydraulic Performance of U-Tube Borehole Heat Exchanger with Different Cross-Sections," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3255-:d:517742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3255/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3255/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Li & Chen, Sarula & Yang, Yang & Sun, Yong, 2019. "Transient heat transfer performance of a vertical double U-tube borehole heat exchanger under different operation conditions," Renewable Energy, Elsevier, vol. 131(C), pages 494-505.
    2. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    3. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    4. Blum, Philipp & Campillo, Gisela & Kölbel, Thomas, 2011. "Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany," Energy, Elsevier, vol. 36(5), pages 3002-3011.
    5. Wu, Geng & Wang, Haojing & Wu, Qingguo, 2020. "Wind power development in the Belt and Road area of Xinjiang, China: Problems and solutions," Utilities Policy, Elsevier, vol. 64(C).
    6. Zhang, Changxing & Xu, Hang & Fan, Jianhua & Sun, Pengkun & Sun, Shicai & Kong, Xiangqiang, 2020. "The coupled two-step parameter estimation procedure for borehole thermal resistance in thermal response test," Renewable Energy, Elsevier, vol. 154(C), pages 672-683.
    7. Stefan Blomqvist & Lina La Fleur & Shahnaz Amiri & Patrik Rohdin & Louise Ödlund (former Trygg), 2019. "The Impact on System Performance When Renovating a Multifamily Building Stock in a District Heated Region," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    8. Andrzej Gajewski & Katarzyna Gładyszewska-Fiedoruk & Dorota Anna Krawczyk, 2019. "Carbon Dioxide Emissions during Air, Ground, or Groundwater Heat Pump Performance in Białystok," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    9. Wenting Ma & Moon Keun Kim & Jianli Hao, 2019. "Numerical Simulation Modeling of a GSHP and WSHP System for an Office Building in the Hot Summer and Cold Winter Region of China: A Case Study in Suzhou," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    10. Younas, Umair & Khan, B. & Ali, S.M. & Arshad, C.M. & Farid, U. & Zeb, Kamran & Rehman, Fahad & Mehmood, Yasir & Vaccaro, A., 2016. "Pakistan geothermal renewable energy potential for electric power generation: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 398-413.
    11. Javed, Saqib & Spitler, Jeffrey, 2017. "Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers," Applied Energy, Elsevier, vol. 187(C), pages 790-806.
    12. Harcourt, Freddie & Angeloudis, Athanasios & Piggott, Matthew D., 2019. "Utilising the flexible generation potential of tidal range power plants to optimise economic value," Applied Energy, Elsevier, vol. 237(C), pages 873-884.
    13. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    14. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    15. Danielewicz, J. & Śniechowska, B. & Sayegh, M.A. & Fidorów, N. & Jouhara, H., 2016. "Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground," Energy, Elsevier, vol. 108(C), pages 172-184.
    16. Kerme, Esa Dube & Fung, Alan S., 2020. "Heat transfer simulation, analysis and performance study of single U-tube borehole heat exchanger," Renewable Energy, Elsevier, vol. 145(C), pages 1430-1448.
    17. Eicker, Ursula & Vorschulze, Christoph, 2009. "Potential of geothermal heat exchangers for office building climatisation," Renewable Energy, Elsevier, vol. 34(4), pages 1126-1133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    2. Tangnur Amanzholov & Abzal Seitov & Abdurashid Aliuly & Yelnar Yerdesh & Mohanraj Murugesan & Olivier Botella & Michel Feidt & Hua Sheng Wang & Yerzhan Belyayev & Amankeldy Toleukhanov, 2022. "Thermal Response Measurement and Performance Evaluation of Borehole Heat Exchangers: A Case Study in Kazakhstan," Energies, MDPI, vol. 15(22), pages 1-31, November.
    3. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    4. Tomasz Sliwa & Tomasz Kowalski & Dominik Cekus & Aneta Sapińska-Śliwa, 2021. "Research on Fresh and Hardened Sealing Slurries with the Addition of Magnesium Regarding Thermal Conductivity for Energy Piles and Borehole Heat Exchangers," Energies, MDPI, vol. 14(16), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aminhossein Jahanbin & Giovanni Semprini & Andrea Natale Impiombato & Cesare Biserni & Eugenia Rossi di Schio, 2020. "Effects of the Circuit Arrangement on the Thermal Performance of Double U-Tube Ground Heat Exchangers," Energies, MDPI, vol. 13(12), pages 1-19, June.
    2. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    3. Sara Sewastianik & Andrzej Gajewski, 2020. "Energetic and Ecologic Heat Pumps Evaluation in Poland," Energies, MDPI, vol. 13(18), pages 1-17, September.
    4. Park, Sangwoo & Lee, Seokjae & Park, Sangyeong & Choi, Hangseok, 2022. "Empirical formulas for borehole thermal resistance of parallel U-type cast-in-place energy pile," Renewable Energy, Elsevier, vol. 197(C), pages 211-227.
    5. Bi, Yuehong & Lyu, Tianli & Wang, Hongyan & Sun, Ruirui & Yu, Meize, 2019. "Parameter analysis of single U-tube GHE and dynamic simulation of underground temperature field round one year for GSHP," Energy, Elsevier, vol. 174(C), pages 138-147.
    6. Jing, Zefeng & Wang, Huaijiu & Feng, Chenchen & Wang, Shuzhong, 2020. "Numerical study on the heat characteristics of a novel artificial seepage thermal storage based on the successive four seasons," Renewable Energy, Elsevier, vol. 160(C), pages 1185-1193.
    7. Yao, Jian & Liu, Wenjie & Zhang, Lu & Tian, Binshou & Dai, Yanjun & Huang, Mingjun, 2020. "Performance analysis of a residential heating system using borehole heat exchanger coupled with solar assisted PV/T heat pump," Renewable Energy, Elsevier, vol. 160(C), pages 160-175.
    8. Marco Belliardi & Nerio Cereghetti & Paola Caputo & Simone Ferrari, 2021. "A Method to Analyze the Performance of Geocooling Systems with Borehole Heat Exchangers. Results in a Monitored Residential Building in Southern Alps," Energies, MDPI, vol. 14(21), pages 1-18, November.
    9. Sławomir Rabczak & Paweł Kut, 2020. "Analysis of Yearly Effectiveness of a Diaphragm Ground Heat Exchanger Supported by an Ultraviolet Sterilamp," Energies, MDPI, vol. 13(11), pages 1-7, June.
    10. Zhang, Changxing & Lu, Jiahui & Wang, Xinjie & Xu, Hang & Sun, Shicai, 2022. "Effect of geological stratification on estimated accuracy of ground thermal parameters in thermal response test," Renewable Energy, Elsevier, vol. 186(C), pages 585-595.
    11. Sara Sewastianik & Andrzej Gajewski, 2021. "An Environmental Assessment of Heat Pumps in Poland," Energies, MDPI, vol. 14(23), pages 1-24, December.
    12. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    13. Li, Wenxin & Li, Xiangdong & Wang, Yong & Du, Ruiqing & Tu, Jiyuan, 2019. "Effect of the heat load distribution on thermal performance predictions of ground heat exchangers in a stratified subsurface," Renewable Energy, Elsevier, vol. 141(C), pages 340-348.
    14. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Zhang, Changxing & Wang, Xinjie & Sun, Pengkun & Kong, Xiangqiang & Sun, Shicai, 2020. "Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 2399-2408.
    16. Angeloudis, Athanasios & Kramer, Stephan C. & Hawkins, Noah & Piggott, Matthew D., 2020. "On the potential of linked-basin tidal power plants: An operational and coastal modelling assessment," Renewable Energy, Elsevier, vol. 155(C), pages 876-888.
    17. Stylianou, Iosifina Iosif & Florides, Georgios & Tassou, Savvas & Tsiolakis, Efthymios & Christodoulides, Paul, 2017. "Methodology for estimating the ground heat absorption rate of Ground Heat Exchangers," Energy, Elsevier, vol. 127(C), pages 258-270.
    18. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    19. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    20. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3255-:d:517742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.