IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp876-888.html
   My bibliography  Save this article

On the potential of linked-basin tidal power plants: An operational and coastal modelling assessment

Author

Listed:
  • Angeloudis, Athanasios
  • Kramer, Stephan C.
  • Hawkins, Noah
  • Piggott, Matthew D.

Abstract

Single-basin tidal range power plants have the advantage of predictable energy outputs, but feature non-generation periods in every tidal cycle. Linked-basin tidal power systems can reduce this variability and consistently generate power. However, as a concept the latter are under-studied with limited information on their performance relative to single-basin designs. In addressing this, we outline the basic principles of linked-basin power plant operation and report results from their numerical simulation. Tidal range energy operational models are applied to gauge their capabilities relative to conventional, single-basin tidal power plants. A coastal ocean model (Thetis) is then refined with linked-basin modelling capabilities. Simulations demonstrate that linked-basin systems can reduce non-generation periods at the expense of the extractable energy output relative to conventional tidal lagoons and barrages. As an example, a hypothetical case is considered for a site in the Severn Estuary, UK. The linked-basin system is seen to generate energy 80–100% of the time over a spring-neap cycle, but harnesses at best ≈ 30% of the energy of an equivalent-area single-basin design.

Suggested Citation

  • Angeloudis, Athanasios & Kramer, Stephan C. & Hawkins, Noah & Piggott, Matthew D., 2020. "On the potential of linked-basin tidal power plants: An operational and coastal modelling assessment," Renewable Energy, Elsevier, vol. 155(C), pages 876-888.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:876-888
    DOI: 10.1016/j.renene.2020.03.167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120305000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avdis, Alexandros & Candy, Adam S. & Hill, Jon & Kramer, Stephan C. & Piggott, Matthew D., 2018. "Efficient unstructured mesh generation for marine renewable energy applications," Renewable Energy, Elsevier, vol. 116(PA), pages 842-856.
    2. Aggidis, G.A. & Feather, O., 2012. "Tidal range turbines and generation on the Solway Firth," Renewable Energy, Elsevier, vol. 43(C), pages 9-17.
    3. Waters, Shaun & Aggidis, George, 2016. "Tidal range technologies and state of the art in review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 514-529.
    4. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    5. Yates, Nicholas & Walkington, Ian & Burrows, Richard & Wolf, Judith, 2013. "The energy gains realisable through pumping for tidal range energy schemes," Renewable Energy, Elsevier, vol. 58(C), pages 79-84.
    6. Waters, Shaun & Aggidis, George, 2016. "A World First: Swansea Bay Tidal lagoon in review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 916-921.
    7. Lewis, M.J. & Angeloudis, A. & Robins, P.E. & Evans, P.S. & Neill, S.P., 2017. "Influence of storm surge on tidal range energy," Energy, Elsevier, vol. 122(C), pages 25-36.
    8. Martin-Short, R. & Hill, J. & Kramer, S.C. & Avdis, A. & Allison, P.A. & Piggott, M.D., 2015. "Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma," Renewable Energy, Elsevier, vol. 76(C), pages 596-607.
    9. Angeloudis, Athanasios & Falconer, Roger A. & Bray, Samuel & Ahmadian, Reza, 2016. "Representation and operation of tidal energy impoundments in a coastal hydrodynamic model," Renewable Energy, Elsevier, vol. 99(C), pages 1103-1115.
    10. Angeloudis, Athanasios & Ahmadian, Reza & Falconer, Roger A. & Bockelmann-Evans, Bettina, 2016. "Numerical model simulations for optimisation of tidal lagoon schemes," Applied Energy, Elsevier, vol. 165(C), pages 522-536.
    11. Li, Ying & Pan, Dong-Zi, 2017. "The ebb and flow of tidal barrage development in Zhejiang Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 380-389.
    12. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    13. Angeloudis, Athanasios & Falconer, Roger A., 2017. "Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics," Renewable Energy, Elsevier, vol. 114(PA), pages 337-351.
    14. Harcourt, Freddie & Angeloudis, Athanasios & Piggott, Matthew D., 2019. "Utilising the flexible generation potential of tidal range power plants to optimise economic value," Applied Energy, Elsevier, vol. 237(C), pages 873-884.
    15. Zhou, Juntao & Pan, Shunqi & Falconer, Roger A., 2014. "Optimization modelling of the impacts of a Severn Barrage for a two-way generation scheme using a Continental Shelf model," Renewable Energy, Elsevier, vol. 72(C), pages 415-427.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pappas, Konstantinos & Mackie, Lucas & Zilakos, Ilias & van der Weijde, Adriaan Hendrik & Angeloudis, Athanasios, 2023. "Sensitivity of tidal range assessments to harmonic constituents and analysis timeframe," Renewable Energy, Elsevier, vol. 205(C), pages 125-141.
    2. Martí Barclay, Vicky & Neill, Simon P. & Angeloudis, Athanasios, 2023. "Tidal range resource of the Patagonian shelf," Renewable Energy, Elsevier, vol. 209(C), pages 85-96.
    3. Guo, Bin & Ahmadian, Reza & Falconer, Roger A., 2021. "Refined hydro-environmental modelling for tidal energy generation: West Somerset Lagoon case study," Renewable Energy, Elsevier, vol. 179(C), pages 2104-2123.
    4. Mayke Feitosa Progênio & Claudio José Cavalcante Blanco & Josias Silva Cruz & Felipe Antônio Melo Costa Filho & André Luiz Amarante Mesquita, 2021. "Environmental impact index for tidal power plants in amazon region coast," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10814-10830, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harcourt, Freddie & Angeloudis, Athanasios & Piggott, Matthew D., 2019. "Utilising the flexible generation potential of tidal range power plants to optimise economic value," Applied Energy, Elsevier, vol. 237(C), pages 873-884.
    2. Moreira, Túlio Marcondes & de Faria, Jackson Geraldo & Vaz-de-Melo, Pedro O.S. & Medeiros-Ribeiro, Gilberto, 2023. "Development and validation of an AI-Driven model for the La Rance tidal barrage: A generalisable case study," Applied Energy, Elsevier, vol. 332(C).
    3. Mejia-Olivares, Carlos Joel & Haigh, Ivan D. & Angeloudis, Athanasios & Lewis, Matt J. & Neill, Simon P., 2020. "Tidal range energy resource assessment of the Gulf of California, Mexico," Renewable Energy, Elsevier, vol. 155(C), pages 469-483.
    4. Xue, Jingjing & Ahmadian, Reza & Jones, Owen & Falconer, Roger A., 2021. "Design of tidal range energy generation schemes using a Genetic Algorithm model," Applied Energy, Elsevier, vol. 286(C).
    5. Jingjing Xue & Reza Ahmadian & Roger A. Falconer, 2019. "Optimising the Operation of Tidal Range Schemes," Energies, MDPI, vol. 12(15), pages 1-23, July.
    6. Pappas, Konstantinos & Mackie, Lucas & Zilakos, Ilias & van der Weijde, Adriaan Hendrik & Angeloudis, Athanasios, 2023. "Sensitivity of tidal range assessments to harmonic constituents and analysis timeframe," Renewable Energy, Elsevier, vol. 205(C), pages 125-141.
    7. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    8. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    9. Angeloudis, Athanasios & Falconer, Roger A., 2017. "Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics," Renewable Energy, Elsevier, vol. 114(PA), pages 337-351.
    10. Martí Barclay, Vicky & Neill, Simon P. & Angeloudis, Athanasios, 2023. "Tidal range resource of the Patagonian shelf," Renewable Energy, Elsevier, vol. 209(C), pages 85-96.
    11. Guo, Bin & Ahmadian, Reza & Falconer, Roger A., 2021. "Refined hydro-environmental modelling for tidal energy generation: West Somerset Lagoon case study," Renewable Energy, Elsevier, vol. 179(C), pages 2104-2123.
    12. Xue, Jingjing & Ahmadian, Reza & Jones, Owen, 2020. "Genetic Algorithm in Tidal Range Schemes’ Optimisation," Energy, Elsevier, vol. 200(C).
    13. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    14. Angeloudis, Athanasios & Falconer, Roger A. & Bray, Samuel & Ahmadian, Reza, 2016. "Representation and operation of tidal energy impoundments in a coastal hydrodynamic model," Renewable Energy, Elsevier, vol. 99(C), pages 1103-1115.
    15. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    16. Lewis, M.J. & Angeloudis, A. & Robins, P.E. & Evans, P.S. & Neill, S.P., 2017. "Influence of storm surge on tidal range energy," Energy, Elsevier, vol. 122(C), pages 25-36.
    17. Kim, J.W. & Ha, H.K. & Woo, S.-B. & Kim, M.-S. & Kwon, H.-K., 2021. "Unbalanced sediment transport by tidal power generation in Lake Sihwa," Renewable Energy, Elsevier, vol. 172(C), pages 1133-1144.
    18. Lisboa, A.C. & Vieira, T.L. & Guedes, L.S.M. & Vieira, D.A.G. & Saldanha, R.R., 2017. "Optimal analytic dispatch for tidal energy generation," Renewable Energy, Elsevier, vol. 108(C), pages 371-379.
    19. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. María José Suárez-López & Rodolfo Espina-Valdés & Víctor Manuel Fernández Pacheco & Antonio Navarro Manso & Eduardo Blanco-Marigorta & Eduardo Álvarez-Álvarez, 2019. "A Review of Software Tools to Study the Energetic Potential of Tidal Currents," Energies, MDPI, vol. 12(9), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:876-888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.