IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v116y2018ipap842-856.html
   My bibliography  Save this article

Efficient unstructured mesh generation for marine renewable energy applications

Author

Listed:
  • Avdis, Alexandros
  • Candy, Adam S.
  • Hill, Jon
  • Kramer, Stephan C.
  • Piggott, Matthew D.

Abstract

Renewable energy is the cornerstone of preventing dangerous climate change whilst maintaining a robust energy supply. Tidal energy will arguably play a critical role in the renewable energy portfolio as it is both predictable and reliable, and can be put in place across the globe. However, installation may impact the local and regional ecology via changes in tidal dynamics, sediment transport pathways or bathymetric changes. In order to mitigate these effects, tidal energy devices need to be modelled, to predict hydrodynamic changes. Robust mesh generation is a fundamental component required for developing simulations with high accuracy. However, mesh generation for coastal domains can be an elaborate procedure. Here, we describe an approach combining mesh generators with Geographical Information Systems. We demonstrate robustness and efficiency by constructing a mesh with which to examine the potential environmental impact of a tidal turbine farm installation in the Orkney Islands. The mesh is then used with two well-validated ocean models, to compare their flow predictions with and without a turbine array. The results demonstrate that it is possible to create an easy-to-use tool to generate high-quality meshes for combined coastal engineering, here tidal turbines, and coastal ocean simulations.

Suggested Citation

  • Avdis, Alexandros & Candy, Adam S. & Hill, Jon & Kramer, Stephan C. & Piggott, Matthew D., 2018. "Efficient unstructured mesh generation for marine renewable energy applications," Renewable Energy, Elsevier, vol. 116(PA), pages 842-856.
  • Handle: RePEc:eee:renene:v:116:y:2018:i:pa:p:842-856
    DOI: 10.1016/j.renene.2017.09.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117309205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.09.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansson, Bengt, 2013. "Security aspects of future renewable energy systems–A short overview," Energy, Elsevier, vol. 61(C), pages 598-605.
    2. Funke, S.W. & Farrell, P.E. & Piggott, M.D., 2014. "Tidal turbine array optimisation using the adjoint approach," Renewable Energy, Elsevier, vol. 63(C), pages 658-673.
    3. Neill, Simon P. & Vögler, Arne & Goward-Brown, Alice J. & Baston, Susana & Lewis, Matthew J. & Gillibrand, Philip A. & Waldman, Simon & Woolf, David K., 2017. "The wave and tidal resource of Scotland," Renewable Energy, Elsevier, vol. 114(PA), pages 3-17.
    4. Pérez-Ortiz, Alberto & Borthwick, Alistair G.L. & McNaughton, James & Avdis, Alexandros, 2017. "Characterization of the tidal resource in Rathlin Sound," Renewable Energy, Elsevier, vol. 114(PA), pages 229-243.
    5. Martin-Short, R. & Hill, J. & Kramer, S.C. & Avdis, A. & Allison, P.A. & Piggott, M.D., 2015. "Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma," Renewable Energy, Elsevier, vol. 76(C), pages 596-607.
    6. Kramer, Stephan C. & Piggott, Matthew D., 2016. "A correction to the enhanced bottom drag parameterisation of tidal turbines," Renewable Energy, Elsevier, vol. 92(C), pages 385-396.
    7. Shields, Mark A. & Dillon, Lora Jane & Woolf, David K. & Ford, Alex T., 2009. "Strategic priorities for assessing ecological impacts of marine renewable energy devices in the Pentland Firth (Scotland, UK)," Marine Policy, Elsevier, vol. 33(4), pages 635-642, July.
    8. Funke, S.W. & Kramer, S.C. & Piggott, M.D., 2016. "Design optimisation and resource assessment for tidal-stream renewable energy farms using a new continuous turbine approach," Renewable Energy, Elsevier, vol. 99(C), pages 1046-1061.
    9. Angeloudis, Athanasios & Falconer, Roger A. & Bray, Samuel & Ahmadian, Reza, 2016. "Representation and operation of tidal energy impoundments in a coastal hydrodynamic model," Renewable Energy, Elsevier, vol. 99(C), pages 1103-1115.
    10. Neill, Simon P. & Jordan, James R. & Couch, Scott J., 2012. "Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks," Renewable Energy, Elsevier, vol. 37(1), pages 387-397.
    11. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    12. Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angeloudis, Athanasios & Kramer, Stephan C. & Hawkins, Noah & Piggott, Matthew D., 2020. "On the potential of linked-basin tidal power plants: An operational and coastal modelling assessment," Renewable Energy, Elsevier, vol. 155(C), pages 876-888.
    2. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Hill, J. & Piggott, M.D., 2019. "The trade-off between tidal-turbine array yield and environmental impact: A habitat suitability modelling approach," Renewable Energy, Elsevier, vol. 143(C), pages 390-403.
    3. Harcourt, Freddie & Angeloudis, Athanasios & Piggott, Matthew D., 2019. "Utilising the flexible generation potential of tidal range power plants to optimise economic value," Applied Energy, Elsevier, vol. 237(C), pages 873-884.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goss, Z.L. & Coles, D.S. & Kramer, S.C. & Piggott, M.D., 2021. "Efficient economic optimisation of large-scale tidal stream arrays," Applied Energy, Elsevier, vol. 295(C).
    2. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    3. Philip A. Gillibrand & Roy A. Walters & Jason McIlvenny, 2016. "Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress," Energies, MDPI, vol. 9(10), pages 1-22, October.
    4. De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
    5. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    6. Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
    7. Ramos, V. & Carballo, R. & Ringwood, John V., 2019. "Application of the actuator disc theory of Delft3D-FLOW to model far-field hydrodynamic impacts of tidal turbines," Renewable Energy, Elsevier, vol. 139(C), pages 1320-1335.
    8. Marco Piano & Peter E. Robins & Alan G. Davies & Simon P. Neill, 2018. "The Influence of Intra-Array Wake Dynamics on Depth-Averaged Kinetic Tidal Turbine Energy Extraction Simulations," Energies, MDPI, vol. 11(10), pages 1-21, October.
    9. Auguste, Christelle & Nader, Jean-Roch & Marsh, Philip & Penesis, Irene & Cossu, Remo, 2022. "Modelling the influence of Tidal Energy Converters on sediment dynamics in Banks Strait, Tasmania," Renewable Energy, Elsevier, vol. 188(C), pages 1105-1119.
    10. Haverson, David & Bacon, John & Smith, Helen C.M. & Venugopal, Vengatesan & Xiao, Qing, 2018. "Modelling the hydrodynamic and morphological impacts of a tidal stream development in Ramsey Sound," Renewable Energy, Elsevier, vol. 126(C), pages 876-887.
    11. Christelle Auguste & Philip Marsh & Jean-Roch Nader & Remo Cossu & Irene Penesis, 2020. "Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics," Energies, MDPI, vol. 13(20), pages 1-22, October.
    12. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Hill, J. & Piggott, M.D., 2019. "The trade-off between tidal-turbine array yield and environmental impact: A habitat suitability modelling approach," Renewable Energy, Elsevier, vol. 143(C), pages 390-403.
    13. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    14. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    15. Su-jin Hwang & Chul H. Jo, 2019. "Tidal Current Energy Resource Distribution in Korea," Energies, MDPI, vol. 12(22), pages 1-15, November.
    16. Auguste, Christelle & Nader, Jean-Roch & Marsh, Philip & Cossu, Remo & Penesis, Irene, 2021. "Variability of sediment processes around a tidal farm in a theoretical channel," Renewable Energy, Elsevier, vol. 171(C), pages 606-620.
    17. Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.
    18. Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).
    19. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Culley, D.M. & Hill, J. & Halpern, B.S. & Piggott, M.D., 2017. "The trade-off between tidal-turbine array yield and impact on flow: A multi-objective optimisation problem," Renewable Energy, Elsevier, vol. 114(PB), pages 1247-1257.
    20. Fairley, I. & Karunarathna, H. & Masters, I., 2018. "The influence of waves on morphodynamic impacts of energy extraction at a tidal stream turbine site in the Pentland Firth," Renewable Energy, Elsevier, vol. 125(C), pages 630-647.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:116:y:2018:i:pa:p:842-856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.