IDEAS home Printed from
   My bibliography  Save this article

Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma


  • Martin-Short, R.
  • Hill, J.
  • Kramer, S.C.
  • Avdis, A.
  • Allison, P.A.
  • Piggott, M.D.


Large-scale extraction of power from tidal streams within the Pentland Firth is expected to be underway in the near future. The Inner Sound of Stroma in particular has attracted significant commercial interest. To understand potential environmental impacts of the installation of a tidal turbine array a case study based upon the Inner Sound is considered. A numerical computational fluid dynamics model, Fluidity, is used to conduct a series of depth-averaged simulations to investigate velocity and bed shear stress changes due to the presence of idealised tidal turbine arrays. The number of turbines is increased from zero to 400. It is found that arrays in excess of 85 turbines have the potential to affect bed shear stress distributions in such a way that the most favourable sites for sediment accumulation migrate from the edges of the Inner Sound towards its centre. Deposits of fine gravel and coarse sand are indicated to occur within arrays of greater than 240 turbines with removal of existing deposits in the shallower channel margins also possible. The effects of the turbine array may be seen several kilometres from the site which has implications not only on sediment accumulation, but also on the benthic fauna.

Suggested Citation

  • Martin-Short, R. & Hill, J. & Kramer, S.C. & Avdis, A. & Allison, P.A. & Piggott, M.D., 2015. "Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma," Renewable Energy, Elsevier, vol. 76(C), pages 596-607.
  • Handle: RePEc:eee:renene:v:76:y:2015:i:c:p:596-607
    DOI: 10.1016/j.renene.2014.11.079

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Neill, Simon P. & Jordan, James R. & Couch, Scott J., 2012. "Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks," Renewable Energy, Elsevier, vol. 37(1), pages 387-397.
    2. Neill, Simon P. & Litt, Emmer J. & Couch, Scott J. & Davies, Alan G., 2009. "The impact of tidal stream turbines on large-scale sediment dynamics," Renewable Energy, Elsevier, vol. 34(12), pages 2803-2812.
    3. Draper, Scott & Adcock, Thomas A.A. & Borthwick, Alistair G.L. & Houlsby, Guy T., 2014. "Estimate of the tidal stream power resource of the Pentland Firth," Renewable Energy, Elsevier, vol. 63(C), pages 650-657.
    4. Ahmadian, Reza & Falconer, Roger & Bockelmann-Evans, Bettina, 2012. "Far-field modelling of the hydro-environmental impact of tidal stream turbines," Renewable Energy, Elsevier, vol. 38(1), pages 107-116.
    5. Funke, S.W. & Farrell, P.E. & Piggott, M.D., 2014. "Tidal turbine array optimisation using the adjoint approach," Renewable Energy, Elsevier, vol. 63(C), pages 658-673.
    6. Shields, Mark A. & Dillon, Lora Jane & Woolf, David K. & Ford, Alex T., 2009. "Strategic priorities for assessing ecological impacts of marine renewable energy devices in the Pentland Firth (Scotland, UK)," Marine Policy, Elsevier, vol. 33(4), pages 635-642, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    2. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    3. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
    4. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    5. Philip A. Gillibrand & Roy A. Walters & Jason McIlvenny, 2016. "Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress," Energies, MDPI, vol. 9(10), pages 1-22, October.
    6. Bonar, Paul A.J. & Bryden, Ian G. & Borthwick, Alistair G.L., 2015. "Social and ecological impacts of marine energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 486-495.
    7. Lilia Flores Mateos & Michael Hartnett, 2020. "Hydrodynamic Effects of Tidal-Stream Power Extraction for Varying Turbine Operating Conditions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    8. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Hill, J. & Piggott, M.D., 2019. "The trade-off between tidal-turbine array yield and environmental impact: A habitat suitability modelling approach," Renewable Energy, Elsevier, vol. 143(C), pages 390-403.
    9. Fairley, I. & Ahmadian, R. & Falconer, R.A. & Willis, M.R. & Masters, I., 2014. "The effects of a Severn Barrage on wave conditions in the Bristol Channel," Renewable Energy, Elsevier, vol. 68(C), pages 428-442.
    10. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    11. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J., 2014. "Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes," Renewable Energy, Elsevier, vol. 72(C), pages 311-321.
    12. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    13. Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
    14. Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.
    15. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    16. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Tidal stream energy impact on the transient and residual flow in an estuary: A 3D analysis," Applied Energy, Elsevier, vol. 116(C), pages 167-177.
    17. Adcock, Thomas A.A. & Draper, Scott, 2014. "Power extraction from tidal channels – Multiple tidal constituents, compound tides and overtides," Renewable Energy, Elsevier, vol. 63(C), pages 797-806.
    18. Fallon, D. & Hartnett, M. & Olbert, A. & Nash, S., 2014. "The effects of array configuration on the hydro-environmental impacts of tidal turbines," Renewable Energy, Elsevier, vol. 64(C), pages 10-25.
    19. De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
    20. Heath, Jason E. & Jensen, Richard P. & Weller, Sam D. & Hardwick, Jon & Roberts, Jesse D. & Johanning, Lars, 2017. "Applicability of geotechnical approaches and constitutive models for foundation analysis of marine renewable energy arrays," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 191-204.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:76:y:2015:i:c:p:596-607. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.