IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v107y2017icp271-287.html
   My bibliography  Save this article

A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil

Author

Listed:
  • Marta-Almeida, Martinho
  • Cirano, Mauro
  • Guedes Soares, Carlos
  • Lessa, Guilherme C.

Abstract

Estuaries may have ideal technical conditions for tidal energy conversion: strong currents and proximity to the coast and urban/industrial infrastructures. This is the case of the estuary Baía de Todos os Santos, for which a numerical tidal potential density assessment was done. This study used a high resolution numerical configuration of the ocean model ROMS forced with realistic surface and lateral forcing, as well as with tides and river discharges into the bay. Strong currents were found along the main axis of the bay, particularly at the centre and left side of the bay’s main entrance, and for a considerable time fraction. In these regions, speeds higher than 1 m s−1 were found during about 30% of the time leading to a power density around 1300 W m−2 at the surface layer, reaching peaks higher than 2500 W m−2. The energetic flow at the left side of the inlet is affected by a remarkable sand ridge, the St. Antonio Bank, which intensifies the flow between the shoal and the coast.

Suggested Citation

  • Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.
  • Handle: RePEc:eee:renene:v:107:y:2017:i:c:p:271-287
    DOI: 10.1016/j.renene.2017.01.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117300575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.01.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    2. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    3. Thiébot, Jérôme & Bailly du Bois, Pascal & Guillou, Sylvain, 2015. "Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport – Application to the Alderney Race (Raz Blanchard), France," Renewable Energy, Elsevier, vol. 75(C), pages 356-365.
    4. Bahaj, AbuBakr S., 2011. "Generating electricity from the oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3399-3416, September.
    5. Blunden, L.S. & Bahaj, A.S. & Aziz, N.S., 2013. "Tidal current power for Indonesia? An initial resource estimation for the Alas Strait," Renewable Energy, Elsevier, vol. 49(C), pages 137-142.
    6. Adcock, Thomas A.A. & Draper, Scott, 2014. "Power extraction from tidal channels – Multiple tidal constituents, compound tides and overtides," Renewable Energy, Elsevier, vol. 63(C), pages 797-806.
    7. Gunawan, Budi & Neary, Vincent S. & Colby, Jonathan, 2014. "Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York," Renewable Energy, Elsevier, vol. 71(C), pages 509-517.
    8. Neill, Simon P. & Litt, Emmer J. & Couch, Scott J. & Davies, Alan G., 2009. "The impact of tidal stream turbines on large-scale sediment dynamics," Renewable Energy, Elsevier, vol. 34(12), pages 2803-2812.
    9. Iglesias, G. & Sánchez, M. & Carballo, R. & Fernández, H., 2012. "The TSE index – A new tool for selecting tidal stream sites in depth-limited regions," Renewable Energy, Elsevier, vol. 48(C), pages 350-357.
    10. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M. & Jiang, Lide & French, Steven P. & Shi, Xuan & Smith, Brennan T. & Neary, Vincent S. & Stewart, Kevin M., 2012. "National geodatabase of tidal stream power resource in USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3326-3338.
    11. Martin-Short, R. & Hill, J. & Kramer, S.C. & Avdis, A. & Allison, P.A. & Piggott, M.D., 2015. "Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma," Renewable Energy, Elsevier, vol. 76(C), pages 596-607.
    12. Rashid, Ali, 2012. "Status and potentials of tidal in-stream energy resources in the southern coasts of Iran: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6668-6677.
    13. Ahmadian, Reza & Falconer, Roger & Bockelmann-Evans, Bettina, 2012. "Far-field modelling of the hydro-environmental impact of tidal stream turbines," Renewable Energy, Elsevier, vol. 38(1), pages 107-116.
    14. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2016. "Tidal energy leasing and tidal phasing," Renewable Energy, Elsevier, vol. 85(C), pages 580-587.
    15. Wang, Shujie & Yuan, Peng & Li, Dong & Jiao, Yuhe, 2011. "An overview of ocean renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 91-111, January.
    16. Sakmani, Ahmad Safwan & Lam, Wei-Haur & Hashim, Roslan & Chong, Heap-Yih, 2013. "Site selection for tidal turbine installation in the Strait of Malacca," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 590-602.
    17. Zhou, Juntao & Falconer, Roger A. & Lin, Binliang, 2014. "Refinements to the EFDC model for predicting the hydro-environmental impacts of a barrage across the Severn Estuary," Renewable Energy, Elsevier, vol. 62(C), pages 490-505.
    18. Tang, H.S. & Kraatz, S. & Qu, K. & Chen, G.Q. & Aboobaker, N. & Jiang, C.B., 2014. "High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 960-982.
    19. Charlier, Roger H., 2003. "A "sleeper" awakes: tidal current power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(6), pages 515-529, December.
    20. Angeloudis, Athanasios & Ahmadian, Reza & Falconer, Roger A. & Bockelmann-Evans, Bettina, 2016. "Numerical model simulations for optimisation of tidal lagoon schemes," Applied Energy, Elsevier, vol. 165(C), pages 522-536.
    21. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2014. "The role of tidal asymmetry in characterizing the tidal energy resource of Orkney," Renewable Energy, Elsevier, vol. 68(C), pages 337-350.
    22. Pottmaier, D. & Melo, C.R. & Sartor, M.N. & Kuester, S. & Amadio, T.M. & Fernandes, C.A.H. & Marinha, D. & Alarcon, O.E., 2013. "The Brazilian energy matrix: From a materials science and engineering perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 678-691.
    23. Mueller, Markus & Wallace, Robin, 2008. "Enabling science and technology for marine renewable energy," Energy Policy, Elsevier, vol. 36(12), pages 4376-4382, December.
    24. Dalton, Gordon & Allan, Grant & Beaumont, Nicola & Georgakaki, Aliki & Hacking, Nick & Hooper, Tara & Kerr, Sandy & O’Hagan, Anne Marie & Reilly, Kieran & Ricci, Pierpaolo & Sheng, Wanan & Stallard, T, 2015. "Economic and socio-economic assessment methods for ocean renewable energy: Public and private perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 850-878.
    25. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    26. Vennell, Ross, 2013. "Exceeding the Betz limit with tidal turbines," Renewable Energy, Elsevier, vol. 55(C), pages 277-285.
    27. Work, Paul A. & Haas, Kevin A. & Defne, Zafer & Gay, Thomas, 2013. "Tidal stream energy site assessment via three-dimensional model and measurements," Applied Energy, Elsevier, vol. 102(C), pages 510-519.
    28. Neill, Simon P. & Jordan, James R. & Couch, Scott J., 2012. "Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks," Renewable Energy, Elsevier, vol. 37(1), pages 387-397.
    29. Carballo, R. & Iglesias, G. & Castro, A., 2009. "Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain)," Renewable Energy, Elsevier, vol. 34(6), pages 1517-1524.
    30. Evans, P. & Mason-Jones, A. & Wilson, C. & Wooldridge, C. & O'Doherty, T. & O'Doherty, D., 2015. "Constraints on extractable power from energetic tidal straits," Renewable Energy, Elsevier, vol. 81(C), pages 707-722.
    31. Hashemi, M. Reza & Neill, Simon P. & Robins, Peter E. & Davies, Alan G. & Lewis, Matt J., 2015. "Effect of waves on the tidal energy resource at a planned tidal stream array," Renewable Energy, Elsevier, vol. 75(C), pages 626-639.
    32. Grabbe, Mårten & Lalander, Emilia & Lundin, Staffan & Leijon, Mats, 2009. "A review of the tidal current energy resource in Norway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1898-1909, October.
    33. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    34. Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    3. Cruz, M. & Henriques, R. & Pinho, J.L. & Avilez-Valente, P. & Bio, A. & Iglesias, I., 2023. "Assessment of the potential for hydrokinetic energy production in the Douro river estuary under sea level rise scenarios," Energy, Elsevier, vol. 271(C).
    4. Li, Ming & Cao, Sunliang & Zhu, Xiaolin & Xu, Yang, 2022. "Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities," Applied Energy, Elsevier, vol. 316(C).
    5. Trivedi, Ashish & Trivedi, Vibha & Pandey, Krishan Kumar & Chichi, Ouissal, 2023. "An interpretive model to assess the barriers to ocean energy toward blue economic development in India," Renewable Energy, Elsevier, vol. 211(C), pages 822-830.
    6. Khojasteh, Danial & Chen, Shengyang & Felder, Stefan & Glamore, William & Hashemi, M. Reza & Iglesias, Gregorio, 2022. "Sea level rise changes estuarine tidal stream energy," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    2. Mestres, Marc & Cerralbo, Pablo & Grifoll, Manel & Sierra, Joan Pau & Espino, Manuel, 2019. "Modelling assessment of the tidal stream resource in the Ria of Ferrol (NW Spain) using a year-long simulation," Renewable Energy, Elsevier, vol. 131(C), pages 811-817.
    3. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    4. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    5. Álvarez, M. & Ramos, V. & Carballo, R. & Arean, N. & Torres, M. & Iglesias, G., 2020. "The influence of dredging for locating a tidal stream energy farm," Renewable Energy, Elsevier, vol. 146(C), pages 242-253.
    6. Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.
    7. Tang, H.S. & Qu, K. & Chen, G.Q. & Kraatz, S. & Aboobaker, N. & Jiang, C.B., 2014. "Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 412-425.
    8. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2014. "A port towards energy self-sufficiency using tidal stream power," Energy, Elsevier, vol. 71(C), pages 432-444.
    9. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    10. Sanchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Floating vs. bottom-fixed turbines for tidal stream energy: A comparative impact assessment," Energy, Elsevier, vol. 72(C), pages 691-701.
    11. Mestres, Marc & Griñó, Maria & Sierra, Joan Pau & Mösso, César, 2016. "Analysis of the optimal deployment location for tidal energy converters in the mesotidal Ria de Vigo (NW Spain)," Energy, Elsevier, vol. 115(P1), pages 1179-1187.
    12. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    13. Neill, Simon P. & Vögler, Arne & Goward-Brown, Alice J. & Baston, Susana & Lewis, Matthew J. & Gillibrand, Philip A. & Waldman, Simon & Woolf, David K., 2017. "The wave and tidal resource of Scotland," Renewable Energy, Elsevier, vol. 114(PA), pages 3-17.
    14. Wei-Bo Chen & Hongey Chen & Lee-Yaw Lin & Yi-Chiang Yu, 2017. "Tidal Current Power Resources and Influence of Sea-Level Rise in the Coastal Waters of Kinmen Island, Taiwan," Energies, MDPI, vol. 10(5), pages 1-15, May.
    15. Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
    16. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    17. Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
    18. De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
    19. Vazquez, A. & Iglesias, G., 2015. "LCOE (levelised cost of energy) mapping: A new geospatial tool for tidal stream energy," Energy, Elsevier, vol. 91(C), pages 192-201.
    20. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:107:y:2017:i:c:p:271-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.