IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v75y2015icp356-365.html
   My bibliography  Save this article

Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport – Application to the Alderney Race (Raz Blanchard), France

Author

Listed:
  • Thiébot, Jérôme
  • Bailly du Bois, Pascal
  • Guillou, Sylvain

Abstract

A regional 2DH hydrodynamic model is used to estimate the tidal stream resource of a site located in a macrotidal environment with extreme tidal velocities. The study site is the Alderney Race (Raz Blanchard in French) which is a straight located in the English Channel between the Alderney Island and La Hague cape (France). The estimation of the resource is used to build two realistic tidal energy extraction scenarios consisting in placing a 290 MW tidal turbine array in two different areas. Then, we analyze the impact of turbines on the hydrodynamics and the sediment transport. The hydrodynamic perturbation is restricted to the vicinity of the array where the mean current velocity reduction reaches 0.3 m/s locally (corresponding to 15% of the baseline velocity). Focusing on the variable driving the bedload (the critical erosion threshold exceedance), we confirm that tidal energy extraction tends to reduce the bedload rate and to deflect the sediment fluxes. Our simulations with a simple model for the suspended sediment transport suggest that tidal energy extraction has a significant effect on the area of deposition of the particles transiting through the tidal farm. For the baseline, the sediment particles transiting through the tidal farm deposit mostly in the eastern part of the English Channel. Depending on the location of the tidal farm, the sediment mass balance between the eastern and the western part of the English Channel changes drastically.

Suggested Citation

  • Thiébot, Jérôme & Bailly du Bois, Pascal & Guillou, Sylvain, 2015. "Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport – Application to the Alderney Race (Raz Blanchard), France," Renewable Energy, Elsevier, vol. 75(C), pages 356-365.
  • Handle: RePEc:eee:renene:v:75:y:2015:i:c:p:356-365
    DOI: 10.1016/j.renene.2014.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811400648X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malki, Rami & Masters, Ian & Williams, Alison J. & Nick Croft, T., 2014. "Planning tidal stream turbine array layouts using a coupled blade element momentum – computational fluid dynamics model," Renewable Energy, Elsevier, vol. 63(C), pages 46-54.
    2. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast, USA," Renewable Energy, Elsevier, vol. 36(12), pages 3461-3471.
    3. Bahaj, A.S. & Myers, L., 2004. "Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands) using marine current energy converters," Renewable Energy, Elsevier, vol. 29(12), pages 1931-1945.
    4. Wu, Baigong & Zhang, Xueming & Chen, Jianmei & Xu, Mingqi & Li, Shuangxin & Li, Guangzhe, 2013. "Design of high-efficient and universally applicable blades of tidal stream turbine," Energy, Elsevier, vol. 60(C), pages 187-194.
    5. Lee, Ju Hyun & Park, Sunho & Kim, Dong Hwan & Rhee, Shin Hyung & Kim, Moon-Chan, 2012. "Computational methods for performance analysis of horizontal axis tidal stream turbines," Applied Energy, Elsevier, vol. 98(C), pages 512-523.
    6. Neill, Simon P. & Litt, Emmer J. & Couch, Scott J. & Davies, Alan G., 2009. "The impact of tidal stream turbines on large-scale sediment dynamics," Renewable Energy, Elsevier, vol. 34(12), pages 2803-2812.
    7. Ahmadian, Reza & Falconer, Roger & Bockelmann-Evans, Bettina, 2012. "Far-field modelling of the hydro-environmental impact of tidal stream turbines," Renewable Energy, Elsevier, vol. 38(1), pages 107-116.
    8. Myers, L. & Bahaj, A.S., 2005. "Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race," Renewable Energy, Elsevier, vol. 30(11), pages 1713-1731.
    9. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    10. Plew, David R. & Stevens, Craig L., 2013. "Numerical modelling of the effect of turbines on currents in a tidal channel – Tory Channel, New Zealand," Renewable Energy, Elsevier, vol. 57(C), pages 269-282.
    11. Neill, Simon P. & Jordan, James R. & Couch, Scott J., 2012. "Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks," Renewable Energy, Elsevier, vol. 37(1), pages 387-397.
    12. Chen, Long & Lam, Wei-Haur, 2014. "Methods for predicting seabed scour around marine current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 683-692.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    2. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    3. Fallon, D. & Hartnett, M. & Olbert, A. & Nash, S., 2014. "The effects of array configuration on the hydro-environmental impacts of tidal turbines," Renewable Energy, Elsevier, vol. 64(C), pages 10-25.
    4. Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.
    5. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    6. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Tidal stream energy impact on the transient and residual flow in an estuary: A 3D analysis," Applied Energy, Elsevier, vol. 116(C), pages 167-177.
    7. Vennell, Ross & Funke, Simon W. & Draper, Scott & Stevens, Craig & Divett, Tim, 2015. "Designing large arrays of tidal turbines: A synthesis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 454-472.
    8. Vazquez, A. & Iglesias, G., 2016. "Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 89-101.
    9. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    10. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    11. Li, Xiaorong & Li, Ming & McLelland, Stuart J. & Jordan, Laura-Beth & Simmons, Stephen M. & Amoudry, Laurent O. & Ramirez-Mendoza, Rafael & Thorne, Peter D., 2017. "Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model," Renewable Energy, Elsevier, vol. 114(PA), pages 297-307.
    12. Iglesias, G. & Sánchez, M. & Carballo, R. & Fernández, H., 2012. "The TSE index – A new tool for selecting tidal stream sites in depth-limited regions," Renewable Energy, Elsevier, vol. 48(C), pages 350-357.
    13. Nasteho Djama Dirieh & Jérôme Thiébot & Sylvain Guillou & Nicolas Guillou, 2022. "Blockage Corrections for Tidal Turbines—Application to an Array of Turbines in the Alderney Race," Energies, MDPI, vol. 15(10), pages 1-18, May.
    14. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    15. Lin, Jie & Lin, Binliang & Sun, Jian & Chen, Yaling, 2017. "Numerical model simulation of island-headland induced eddies in a site for tidal current energy extraction," Renewable Energy, Elsevier, vol. 101(C), pages 204-213.
    16. Heath, Jason E. & Jensen, Richard P. & Weller, Sam D. & Hardwick, Jon & Roberts, Jesse D. & Johanning, Lars, 2017. "Applicability of geotechnical approaches and constitutive models for foundation analysis of marine renewable energy arrays," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 191-204.
    17. Li, Xiaorong & Li, Ming & Jordan, Laura-Beth & McLelland, Stuart & Parsons, Daniel R. & Amoudry, Laurent O. & Song, Qingyang & Comerford, Liam, 2019. "Modelling impacts of tidal stream turbines on surface waves," Renewable Energy, Elsevier, vol. 130(C), pages 725-734.
    18. Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).
    19. Van Thinh Nguyen & Alina Santa Cruz & Sylvain S. Guillou & Mohamad N. Shiekh Elsouk & Jérôme Thiébot, 2019. "Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)," Energies, MDPI, vol. 12(13), pages 1-20, June.
    20. Chen, Long & Hashim, Roslan & Othman, Faridah & Motamedi, Shervin, 2017. "Experimental study on scour profile of pile-supported horizontal axis tidal current turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 744-754.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:75:y:2015:i:c:p:356-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.