IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p5087-d268087.html
   My bibliography  Save this article

Carbon Dioxide Emissions during Air, Ground, or Groundwater Heat Pump Performance in Białystok

Author

Listed:
  • Andrzej Gajewski

    (Department of HVAC Engineering, Faculty of Civil Engineering and Environmental Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Katarzyna Gładyszewska-Fiedoruk

    (Department of HVAC Engineering, Faculty of Civil Engineering and Environmental Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Dorota Anna Krawczyk

    (Department of HVAC Engineering, Faculty of Civil Engineering and Environmental Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland)

Abstract

The increasing global temperature has induced many states to limit carbon dioxide emissions. The European Union (EU) promotes replacing boilers with heat pumps. However, in countries where electricity is mainly supplied through fossil fuel combustion, condensing gas boilers may prove to be more ecological heat generators. Although this problem was investigated in a particular situation, an algorithm can be applied elsewhere. The running expenditures for the following different heat generators that are available in a location were estimated: water heat pump, brine heat pump, air heat pump, condensing gas boiler, condensing oil boiler, district heat network, and electrical grid. Furthermore, carbon dioxide emissions from local and distant sources were evaluated. The computations were based on hourly averaged external temperature measurements, which were performed by the Institute of Meteorology and Water Management—National Research Institute (IMGW-PIB) in a weather station in Białystok (Poland) for a ten-year period. Compared with a condensing gas boiler system, the air-to-water heat pump has higher operating costs and higher CO 2 emissions. The brine heat pump (closed-loop ground-source heat pump) has lower operating costs, but higher CO 2 emissions than the gas boiler system. The water heat pump (groundwater source heat pump) has the lowest operating costs and CO 2 emissions of all the systems studied in this paper.

Suggested Citation

  • Andrzej Gajewski & Katarzyna Gładyszewska-Fiedoruk & Dorota Anna Krawczyk, 2019. "Carbon Dioxide Emissions during Air, Ground, or Groundwater Heat Pump Performance in Białystok," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5087-:d:268087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/5087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/5087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aira, Roberto & Fernández-Seara, José & Diz, Rubén & Pardiñas, Ángel Á., 2017. "Experimental analysis of a ground source heat pump in a residential installation after two years in operation," Renewable Energy, Elsevier, vol. 114(PB), pages 1214-1223.
    2. Johnson, Eric P., 2011. "Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources," Energy Policy, Elsevier, vol. 39(3), pages 1369-1381, March.
    3. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Sewastianik & Andrzej Gajewski, 2021. "An Environmental Assessment of Heat Pumps in Poland," Energies, MDPI, vol. 14(23), pages 1-24, December.
    2. Sara Sewastianik & Andrzej Gajewski, 2020. "Energetic and Ecologic Heat Pumps Evaluation in Poland," Energies, MDPI, vol. 13(18), pages 1-17, September.
    3. Aizhao Zhou & Xianwen Huang & Wei Wang & Pengming Jiang & Xinwei Li, 2021. "Thermo-Hydraulic Performance of U-Tube Borehole Heat Exchanger with Different Cross-Sections," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    4. Myeong Gil Jeong & Dhanushka Rathnayake & Hong Seok Mun & Muhammad Ammar Dilawar & Kwang Woo Park & Sang Ro Lee & Chul Ju Yang, 2020. "Effect of a Sustainable Air Heat Pump System on Energy Efficiency, Housing Environment, and Productivity Traits in a Pig Farm," Sustainability, MDPI, vol. 12(22), pages 1-13, November.
    5. Jan Wrana & Wojciech Struzik & Piotr Gleń, 2022. "Natural Energy Stored in Groundwater Deposits as a New Way of Obtaining Green Energy for Urban Planners, Architects and Environmentalists," Energies, MDPI, vol. 15(13), pages 1-13, June.
    6. Piotr Jadwiszczak & Jakub Jurasz & Bartosz Kaźmierczak & Elżbieta Niemierka & Wandong Zheng, 2021. "Factors Shaping A/W Heat Pumps CO₂ Emissions—Evidence from Poland," Energies, MDPI, vol. 14(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Y. & Wang, J. & He, W., 2022. "Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Carmen Díaz-Roldán & María del Carmen Ramos-Herrera, 2021. "Innovations and ICT: Do They Favour Economic Growth and Environmental Quality?," Energies, MDPI, vol. 14(5), pages 1-17, March.
    3. Amine Lahiani & Sinha Avik & Muhammad Shahbaz, 2018. "Renewable energy consumption, income, CO2 emissions and oil prices in G7 countries: The importance of asymmetries," Post-Print hal-03677233, HAL.
    4. Li, Chao & Guan, Yanling & Liu, Jianhong & Jiang, Chao & Yang, Ruitao & Hou, Xueming, 2020. "Heat transfer performance of a deep ground heat exchanger for building heating in long-term service," Renewable Energy, Elsevier, vol. 166(C), pages 20-34.
    5. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    6. O'Hegarty, R. & Kinnane, O. & Lennon, D. & Colclough, S., 2022. "Air-to-water heat pumps: Review and analysis of the performance gap between in-use and product rated performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Fuzhong Chen & Guohai Jiang & Kangyin Dong, 2022. "How do FDI inflows curvilinearly affect carbon emissions? Threshold effects of energy service availability and cleanliness," Australian Economic Papers, Wiley Blackwell, vol. 61(4), pages 798-824, December.
    8. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    9. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    10. Kaewnern, Hathaipat & Wangkumharn, Sirikul & Deeyaonarn, Wongsathon & Yousaf, Abaid Ullah & Kongbuamai, Nattapan, 2023. "Investigating the role of research development and renewable energy on human development: An insight from the top ten human development index countries," Energy, Elsevier, vol. 262(PB).
    11. Jahanger, Atif & Hossain, Mohammad Razib & Usman, Muhammad & Chukwuma Onwe, Joshua, 2023. "Recent scenario and nexus between natural resource dependence, energy use and pollution cycles in BRICS region: Does the mediating role of human capital exist?," Resources Policy, Elsevier, vol. 81(C).
    12. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    13. Daniela Nicoleta Sahlian & Adriana Florina Popa & Raluca Florentina Creţu, 2021. "Does the Increase in Renewable Energy Influence GDP Growth? An EU-28 Analysis," Energies, MDPI, vol. 14(16), pages 1-16, August.
    14. Moataz Elshimy & Khadiga M. El-Aasar, 2020. "Carbon footprint, renewable energy, non-renewable energy, and livestock: testing the environmental Kuznets curve hypothesis for the Arab world," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6985-7012, October.
    15. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    16. Metehan Yılgör & Suna Korkmaz & Fulden Kömüryakan, 2021. "The Relationship between Non-Renewable Energy Consumption and Economic Growth: A Regional Analysis of European Continent," Journal of Research in Economics, Politics & Finance, Ersan ERSOY, vol. 6(3), pages 587-607.
    17. Xiaohang Ren & Cheng Cheng & Zhen Wang & Cheng Yan, 2021. "Spillover and dynamic effects of energy transition and economic growth on carbon dioxide emissions for the European Union: A dynamic spatial panel model," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 228-242, January.
    18. Karaaslan, Abdulkerim & Çamkaya, Serhat, 2022. "The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey," Renewable Energy, Elsevier, vol. 190(C), pages 457-466.
    19. Ramesh Chandra Das & Tonmoy Chatterjee & Enrico Ivaldi, 2022. "Nexus between Housing Price and Magnitude of Pollution: Evidence from the Panel of Some High- and-Low Polluting Cities of the World," Sustainability, MDPI, vol. 14(15), pages 1-18, July.
    20. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5087-:d:268087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.