IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9772-d449776.html
   My bibliography  Save this article

Effect of a Sustainable Air Heat Pump System on Energy Efficiency, Housing Environment, and Productivity Traits in a Pig Farm

Author

Listed:
  • Myeong Gil Jeong

    (Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
    This author contributed equally to this work as co-first author.)

  • Dhanushka Rathnayake

    (Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
    This author contributed equally to this work as co-first author.)

  • Hong Seok Mun

    (Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea)

  • Muhammad Ammar Dilawar

    (Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea)

  • Kwang Woo Park

    (WP Co., Ltd., Suncheon 58023, Korea)

  • Sang Ro Lee

    (WP Co., Ltd., Suncheon 58023, Korea)

  • Chul Ju Yang

    (Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea)

Abstract

High electricity consumption, carbon dioxide (CO 2 ), and elevated noxious gas emission in the global livestock sector have a negative influence on environmental sustainability. This study examined the effects of a heating system using an air heat pump (AHP) on the energy saving, housing environment, and productivity traits of pigs. During the experimental period of 16 weeks, the internal temperature was found to be higher ( p < 0.05) in the AHP house than in the conventional house. Moreover, the average electricity consumption and CO 2 emission decreased by approximately 40 kWh and 19.32 kg, respectively, in the AHP house compared to the house with the conventional heating system. The average NH 3 and H 2 S emissions were significantly lower in the AHP house ( p < 0.05) during the growth stages. The AHP and conventional heating systems did not have a significant influence ( p > 0.05) on the average ultra-fine dust (PM 2.5 ) and formaldehyde level fluctuations. Furthermore, both heating systems did not show a significant difference in the average growth performance of pigs ( p > 0.05), but the weight gain tended to increase in the AHP house. In conclusion, the AHP system has great potential to reduce energy consumption, greenhouse gas (GHG) emissions, and noxious gas emissions by providing economic benefits and an eco-friendly renewable energy source.

Suggested Citation

  • Myeong Gil Jeong & Dhanushka Rathnayake & Hong Seok Mun & Muhammad Ammar Dilawar & Kwang Woo Park & Sang Ro Lee & Chul Ju Yang, 2020. "Effect of a Sustainable Air Heat Pump System on Energy Efficiency, Housing Environment, and Productivity Traits in a Pig Farm," Sustainability, MDPI, vol. 12(22), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9772-:d:449776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diana D’Agostino & Luigi Mele & Francesco Minichiello & Carlo Renno, 2020. "The Use of Ground Source Heat Pump to Achieve a Net Zero Energy Building," Energies, MDPI, vol. 13(13), pages 1-22, July.
    2. Li Huang & Rongyue Zheng & Udo Piontek, 2019. "Installation and Operation of a Solar Cooling and Heating System Incorporated with Air-Source Heat Pumps," Energies, MDPI, vol. 12(6), pages 1-17, March.
    3. Andrzej Gajewski & Katarzyna Gładyszewska-Fiedoruk & Dorota Anna Krawczyk, 2019. "Carbon Dioxide Emissions during Air, Ground, or Groundwater Heat Pump Performance in Białystok," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    4. Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
    5. Kythreotou, Nicoletta & Florides, Georgios & Tassou, Savvas A., 2012. "A proposed methodology for the calculation of direct consumption of fossil fuels and electricity for livestock breeding, and its application to Cyprus," Energy, Elsevier, vol. 40(1), pages 226-235.
    6. Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
    7. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    8. Zheng, Nan & Song, Weidong & Zhao, Li, 2013. "Theoretical and experimental investigations on the changing regularity of the extreme point of the temperature difference between zeotropic mixtures and heat transfer fluid," Energy, Elsevier, vol. 55(C), pages 541-552.
    9. Nakomcic-Smaragdakis, Branka & Stajic, Tijana & Cepic, Zoran & Djuric, Slavko, 2012. "Geothermal energy potentials in the province of Vojvodina from the aspect of the direct energy utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5696-5706.
    10. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shin, Hakjong & Kwak, Younghoon & Jo, Seng-Kyoun & Kim, Se-Han & Huh, Jung-Ho, 2023. "Development of an optimal mechanical ventilation system control strategy based on weather forecasting data for outdoor air cooling in livestock housing," Energy, Elsevier, vol. 268(C).
    2. Hauke F. Deeken & Alexandra Lengling & Manuel S. Krommweh & Wolfgang Büscher, 2023. "Improvement of Piglet Rearing’s Energy Efficiency and Sustainability Using Air-to-Air Heat Exchangers—A Two-Year Case Study," Energies, MDPI, vol. 16(4), pages 1-30, February.
    3. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    4. Shad Mahfuz & Hong-Seok Mun & Muhammad Ammar Dilawar & Keiven Mark B. Ampode & Veasna Chem & Young-Hwa Kim & Jong-Pil Moon & Chul-Ju Yang, 2022. "Geothermal Plus Sunlight-Based Incubator for Sustainable Pig Production," Sustainability, MDPI, vol. 14(22), pages 1-7, November.
    5. Fei Qi & Hao Li & Xuedong Zhao & Jinjun Huang & Zhengxiang Shi, 2023. "Investigation on Minimum Ventilation, Heating, and Energy Consumption of Pig Buildings in China during Winter," Agriculture, MDPI, vol. 13(2), pages 1-15, January.
    6. Costantino, Andrea & Comba, Lorenzo & Cornale, Paolo & Fabrizio, Enrico, 2022. "Energy impact of climate control in pig farming: Dynamic simulation and experimental validation," Applied Energy, Elsevier, vol. 309(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongbao Liu & Fengfei Lou & Xin Qi & Yiyao Shen, 2020. "Enhancing Heating Performance of Low-Temperature Air Source Heat Pumps Using Compressor Casing Thermal Storage," Energies, MDPI, vol. 13(12), pages 1-18, June.
    2. Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun, 2020. "Proposal and performance analysis of a novel solar-assisted resorption-subcooled compression hybrid heat pump system for space heating in cold climate condition," Renewable Energy, Elsevier, vol. 150(C), pages 1136-1150.
    3. Jia, Teng & Dai, Enqian & Dai, Yanjun, 2019. "Thermodynamic analysis and optimization of a balanced-type single-stage NH3-H2O absorption-resorption heat pump cycle for residential heating application," Energy, Elsevier, vol. 171(C), pages 120-134.
    4. Zhang, Yongyu & Gao, Ran & Si, Pengfei & Shi, Lijun & Shang, Yinghui & Wang, Yi & Liu, Boran & Du, Xueqing & Zhao, Kejie & Li, Angui, 2023. "Study on performances of heat-oxygen coupling device for high-altitude environments," Energy, Elsevier, vol. 272(C).
    5. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Liu, Zichu, 2022. "Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage," Applied Energy, Elsevier, vol. 324(C).
    6. Li, Xianting & Lyu, Weihua & Ran, Siyuan & Wang, Baolong & Wu, Wei & Yang, Zixu & Jiang, Sihang & Cui, Mengdi & Song, Pengyuan & You, Tian & Shi, Wenxing, 2020. "Combination principle of hybrid sources and three typical types of hybrid source heat pumps for year-round efficient operation," Energy, Elsevier, vol. 193(C).
    7. Guozhong Zheng & Wentao Bu, 2018. "Review of Heating Methods for Rural Houses in China," Energies, MDPI, vol. 11(12), pages 1-18, December.
    8. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    9. Yuan, Zhipeng & Liu, Qi & Luo, Baojun & Li, Zhenming & Fu, Jianqin & Chen, Jingwei, 2018. "Thermodynamic analysis of different oil flooded compression enhanced vapor injection cycles," Energy, Elsevier, vol. 154(C), pages 553-560.
    10. Shuxue, Xu & Yueyue, Wang & Jianhui, Niu & Guoyuan, Ma, 2020. "‘Coal-to-electricity’ project is ongoing in north China," Energy, Elsevier, vol. 191(C).
    11. Zhou, Chaohui & Ni, Long & Li, Jun & Lin, Zeri & Wang, Jun & Fu, Xuhui & Yao, Yang, 2019. "Air-source heat pump heating system with a new temperature and hydraulic-balance control strategy: A field experiment in a teaching building," Renewable Energy, Elsevier, vol. 141(C), pages 148-161.
    12. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    13. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    14. Shi, Peng & Wang, Lin-Shu & Schwartz, Paul & Hofbauer, Peter, 2020. "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy, Elsevier, vol. 277(C).
    15. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    17. Du, Mingxi & Wang, Xiaoge & Peng, Changhui & Shan, Yuli & Chen, Huai & Wang, Meng & Zhu, Qiuan, 2018. "Quantification and scenario analysis of CO2 emissions from the central heating supply system in China from 2006 to 2025," Applied Energy, Elsevier, vol. 225(C), pages 869-875.
    18. Schäuble, Dominik & Marian, Adela & Cremonese, Lorenzo, 2020. "Conditions for a cost-effective application of smart thermostat systems in residential buildings," Applied Energy, Elsevier, vol. 262(C).
    19. Nakomcic-Smaragdakis, Branka & Dvornic, Tijana & Cepic, Zoran & Dragutinovic, Natasa, 2016. "Analysis and possible geothermal energy utilization in a municipality of Panonian Basin of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 940-951.
    20. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9772-:d:449776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.